
{@a top}

Angular is the name for the Angular of today and tomorrow. AngularJS is the name for all v1.x versions of Angular.

This guide helps you transition from AngularJS to Angular by mapping AngularJS syntax to the equivalent Angular
syntax.

See the Angular syntax in this .

Templates are the user-facing part of an Angular application and are written in HTML. The following table lists
some of the key AngularJS template features with their equivalent Angular template syntax.

AngularJS to Angular Quick Reference

Template basics

AngularJS Angular

Bindings/interpolation Your favorite hero is:
{{vm.favoriteHero}} In AngularJS, an expression in
curly braces denotes one-way binding. This binds
the value of the element to a property in the
controller associated with this template. When using
the `controller as` syntax, the binding is prefixed with
the controller alias (`vm` or `$ctrl`) because you
have to be specific about the source of the binding.

Bindings/interpolation In Angular, a template
expression in curly braces still denotes one-way
binding. This binds the value of the element to a
property of the component. The context of the
binding is implied and is always the associated
component, so it needs no reference variable. For
more information, see the [Interpolation]
(guide/template-syntax#interpolation) section of the
[Template Syntax](guide/template-syntax) page.

Filters <td>{{movie.title | uppercase}}</td> To
filter output in AngularJS templates, use the pipe
character (|) and one or more filters. This example
filters the `title` property to uppercase.

Pipes In Angular you use similar syntax with the
pipe (|) character to filter output, but now you call
them **pipes**. Many (but not all) of the built-in
filters from AngularJS are built-in pipes in Angular.
For more information, see [Filters/pipes](guide/ajs-
quick-reference#filters-pipes) below.

Local variables <tr ng-repeat="movie in
vm.movies"> <td>{{movie.title}}</td> </tr> Here,
`movie` is a user-defined local variable.

Input variables Angular has true template input
variables that are explicitly defined using the `let`
keyword. For more information, see the [ngFor
micro-syntax](guide/template-syntax#microsyntax)
section of the [Template Syntax](guide/template-
syntax) page.

AngularJS provides more than seventy built-in directives for templates. Many of them aren't needed in Angular
because of its more capable and expressive binding system. The following are some of the key AngularJS built-in
directives and their equivalents in Angular.

AngularJS Angular

ng-app <body ng-app="movieHunter"> The application startup process is
called **bootstrapping**. Although you can bootstrap an AngularJS app in
code, many applications bootstrap declaratively with the `ng-app` directive,

Bootstrapping
Angular doesn't have a bootstrap
directive. To launch the app in
code, explicitly bootstrap the
application's root module
(`AppModule`) in `main.ts` and

Template directives

giving it the name of the application's module (`movieHunter`). the application's root component
(`AppComponent`) in
`app.module.ts`.

ng-class <div ng-class="{active: isActive}"> <div ng-class="{active:
isActive, shazam: isImportant}"> In AngularJS, the `ng-class` directive
includes/excludes CSS classes based on an expression. That expression is
often a key-value control object with each key of the object defined as a CSS
class name, and each value defined as a template expression that evaluates
to a Boolean value. In the first example, the `active` class is applied to the
element if `isActive` is true. You can specify multiple classes, as shown in the
second example.

ngClass In Angular, the
`ngClass` directive works
similarly. It includes/excludes
CSS classes based on an
expression. In the first example,
the `active` class is applied to the
element if `isActive` is true. You
can specify multiple classes, as
shown in the second example.
Angular also has **class
binding**, which is a good way to
add or remove a single class, as
shown in the third example. For
more information see the
[Attribute, class, and style
bindings](guide/template-
syntax#other-bindings) section of
the [Template Syntax]
(guide/template-syntax) page.

ng-click <button ng-click="vm.toggleImage()"> <button ng-
click="vm.toggleImage($event)"> In AngularJS, the `ng-click` directive allows
you to specify custom behavior when an element is clicked. In the first
example, when the user clicks the button, the `toggleImage()` method in the

Bind to the `click` event
AngularJS event-based directives
do not exist in Angular. Rather,
define one-way binding from the
template view to the component
using **event binding**. For
event binding, define the name of
the target event within
parenthesis and specify a
template statement, in quotes, to
the right of the equals. Angular
then sets up an event handler for
the target event. When the event
is raised, the handler executes
the template statement. In the
first example, when a user clicks

controller referenced by the `vm` `controller as` alias is executed. The second
example demonstrates passing in the `$event` object, which provides details
about the event to the controller.

the button, the `toggleImage()`
method in the associated
component is executed. The
second example demonstrates
passing in the `$event` object,
which provides details about the
event to the component. For a list
of DOM events, see:
https://developer.mozilla.org/en-
US/docs/Web/Events. For more
information, see the [Event
binding](guide/template-
syntax#event-binding) section of
the [Template Syntax]
(guide/template-syntax) page.

ng-controller <div ng-controller="MovieListCtrl as vm"> In AngularJS, the
`ng-controller` directive attaches a controller to the view. Using the `ng-
controller` (or defining the controller as part of the routing) ties the view to the
controller code associated with that view.

Component decorator In
Angular, the template no longer
specifies its associated controller.
Rather, the component specifies
its associated template as part of
the component class decorator.
For more information, see
[Architecture Overview]
(guide/architecture#components).

ng-hide In AngularJS, the `ng-hide` directive shows or hides the
associated HTML element based on an expression. For more information, see
[ng-show](guide/ajs-quick-reference#ng-show).

Bind to the `hidden` property
In Angular, you use property
binding; there is no built-in *hide*
directive. For more information,
see [ng-show](guide/ajs-quick-
reference#ng-show).

ng-href <a ng-href="{{ angularDocsUrl }}">Angular Docs The `ng-

Bind to the `href` property
Angular uses property binding;
there is no built-in *href*
directive. Place the element's
`href` property in square brackets
and set it to a quoted template
expression. For more information
see the [Property binding]

href` directive allows AngularJS to preprocess the `href` property so that it
can replace the binding expression with the appropriate URL before the
browser fetches from that URL. In AngularJS, the `ng-href` is often used to
activate a route as part of navigation. <a ng-href="#{{ moviesHash
}}">Movies Routing is handled differently in Angular.

(guide/template-syntax#property-
binding) section of the [Template
Syntax](guide/template-syntax)
page. In Angular, `href` is no
longer used for routing. Routing
uses `routerLink`, as shown in
the following example. For more
information on routing, see the
[RouterLink binding]
(guide/router#router-link) section
of the [Routing & Navigation]
(guide/router) page.

ng-if <table ng-if="movies.length"> In AngularJS, the `ng-if` directive
removes or recreates a portion of the DOM, based on an expression. If the
expression is false, the element is removed from the DOM. In this example,
the `` element is removed from the DOM unless the `movies` array has a
length greater than zero.

*ngIf The `*ngIf` directive in Angular works the same as the `ng-if`
directive in AngularJS. It removes or recreates a portion of the DOM
based on an expression. In this example, the `` element is removed from
the DOM unless the `movies` array has a length. The (*) before `ngIf` is
required in this example. For more information, see [Structural Directives]
(guide/structural-directives). `) element repeats for each movie object in
the collection of movies. ` in this example) and its contents into a
template and uses that template to instantiate a view for each item in the
list. Notice the other syntax differences: The (*) before `ngFor` is
required; the `let` keyword identifies `movie` as an input variable; the list
preposition is `of`, not `in`. For more information, see [Structural
Directives](guide/structural-directives).

ngModel In Angular,
two-way binding is
denoted by `[()]`,
descriptively referred to
as a "banana in a box".
This syntax is a shortcut
for defining both
property binding (from

ng-model <input ng-
model="vm.favoriteHero"/> In
AngularJS, the `ng-model` directive
binds a form control to a property in the
controller associated with the template.
This provides **two-way binding**,
whereby any change made to the value
in the view is synchronized with the
model, and any change to the model is
synchronized with the value in the view.

the component to the
view) and event binding
(from the view to the
component), thereby
providing two-way
binding. For more
information on two-way
binding with `ngModel`,
see the [NgModel—
Two-way binding to form
elements with
`[(ngModel)]`]
(../guide/template-
syntax.html#ngModel)
section of the [Template
Syntax](guide/template-
syntax) page.

ng-repeat <tr ng-repeat="movie in
vm.movies"> In AngularJS, the `ng-
repeat` directive repeats the associated
DOM element for each item in the
specified collection. In this example, the
table row (`

*ngFor The `*ngFor` directive in
Angular is similar to the `ng-repeat`
directive in AngularJS. It repeats the
associated DOM element for each item
in the specified collection. More
accurately, it turns the defined element
(`

Bind to the `hidden`
property Angular uses
property binding; there
is no built-in *show*
directive. For hiding and
showing elements, bind
to the HTML `hidden`

ng-show <h3 ng-
show="vm.favoriteHero"> Your favorite
hero is: {{vm.favoriteHero}} </h3> In
AngularJS, the `ng-show` directive
shows or hides the associated DOM
element, based on an expression. In
this example, the `
` element is shown if the `favoriteHero`
variable is truthy.

property. To
conditionally display an
element, place the
element's `hidden`
property in square
brackets and set it to a
quoted template
expression that
evaluates to the
opposite of *show*. In
this example, the `
` element is hidden if
the `favoriteHero`
variable is not truthy.
For more information on
property binding, see
the [Property binding]
(guide/template-
syntax#property-
binding) section of the
[Template Syntax]
(guide/template-syntax)
page.

ng-src <img ng-src="
{{movie.imageurl}}"> The `ng-src`
directive allows AngularJS to
preprocess the `src` property so that it
can replace the binding expression with
the appropriate URL before the browser
fetches from that URL.

Bind to the `src`
property Angular uses
property binding; there
is no built-in *src*
directive. Place the `src`
property in square
brackets and set it to a
quoted template
expression. For more
information on property
binding, see the
[Property binding]
(guide/template-
syntax#property-
binding) section of the
[Template Syntax]

(guide/template-syntax)
page.

ng-style <div ng-style="{color:
colorPreference}"> In AngularJS, the
`ng-style` directive sets a CSS style on
an HTML element based on an
expression. That expression is often a
key-value control object with each key
of the object defined as a CSS property,
and each value defined as an
expression that evaluates to a value
appropriate for the style. In the
example, the `color` style is set to the
current value of the `colorPreference`
variable.

ngStyle In Angular,
the `ngStyle` directive
works similarly. It sets a
CSS style on an HTML
element based on an
expression. In the first
example, the `color`
style is set to the current
value of the
`colorPreference`
variable. Angular also
has **style binding**,
which is good way to set
a single style. This is
shown in the second
example. For more
information on style
binding, see the [Style
binding](guide/template-
syntax#style-binding)
section of the [Template
Syntax](guide/template-
syntax) page. For more
information on the
`ngStyle` directive, see
[NgStyle]
(guide/template-
syntax#ngStyle) section
of the [Template Syntax]
(guide/template-syntax)
page.

ngSwitch In
Angular, the `ngSwitch`
directive works similarly.
It displays an element
whose `*ngSwitchCase`
matches the current

ng-switch <div ng-
switch="vm.favoriteHero &&
vm.checkMovieHero(vm.favoriteHero)">
<div ng-switch-when="true"> Excellent
choice! </div> <div ng-switch-
when="false"> No movie, sorry! </div>
<div ng-switch-default> Please enter
your favorite hero. </div> </div> In
AngularJS, the `ng-switch` directive
swaps the contents of an element by
selecting one of the templates based on
the current value of an expression. In
this example, if `favoriteHero` is not set,
the template displays "Please enter ...".
If `favoriteHero` is set, it checks the
movie hero by calling a controller
method. If that method returns `true`,
the template displays "Excellent
choice!". If that methods returns `false`,
the template displays "No movie,
sorry!".

`ngSwitch` expression
value. In this example, if
`favoriteHero` is not set,
the `ngSwitch` value is
`null` and
`*ngSwitchDefault`
displays, "Please enter
...". If `favoriteHero` is
set, the app checks the
movie hero by calling a
component method. If
that method returns
`true`, the app selects
`*ngSwitchCase="true"`
and displays: "Excellent
choice!" If that methods
returns `false`, the app
selects
`*ngSwitchCase="false"`
and displays: "No
movie, sorry!" The (*)
before `ngSwitchCase`
and `ngSwitchDefault` is
required in this
example. For more
information, see [The
NgSwitch directives]
(guide/template-
syntax#ngSwitch)
section of the [Template
Syntax](guide/template-
syntax) page.

{@a filters-pipes}

Angular pipes provide formatting and transformation for data in the
template, similar to AngularJS filters. Many of the built-in filters in

Filters/pipes

AngularJS have corresponding pipes in Angular. For more information on
pipes, see Pipes.

AngularJS Angular

currency <td>{{movie.price
| currency}}</td> Formats a
number as currency.

currency The Angular
`currency` pipe is similar
although some of the
parameters have changed.

date <td>
{{movie.releaseDate | date}}
</td> Formats a date to a string
based on the requested format.

date The Angular `date`
pipe is similar.

filter <tr ng-repeat="movie
in movieList | filter:
{title:listFilter}"> Selects a
subset of items from the defined
collection, based on the filter
criteria.

none For performance
reasons, no comparable pipe
exists in Angular. Do all your
filtering in the component. If you
need the same filtering code in
several templates, consider
building a custom pipe.

json <pre>{{movie | json}}
</pre> Converts a JavaScript
object into a JSON string. This
is useful for debugging.

json The Angular `json`
pipe does the same thing.

limitTo <tr ng-
repeat="movie in movieList |
limitTo:2:0"> Selects up to the
first parameter (2) number of
items from the collection
starting (optionally) at the
beginning index (0).

slice The `SlicePipe` does
the same thing but the *order of
the parameters is reversed*, in
keeping with the JavaScript
`Slice` method. The first
parameter is the starting index;
the second is the limit. As in
AngularJS, coding this
operation within the component
instead could improve
performance.

lowercase <div>
{{movie.title | lowercase}}</div> ### lowercase The Angular

`lowercase` pipe does the same

Converts the string to
lowercase.

thing.

number <td>
{{movie.starRating | number}}
</td> Formats a number as text.

number The Angular
`number` pipe is similar. It
provides more functionality
when defining the decimal
places, as shown in the second
example above. Angular also
has a `percent` pipe, which
formats a number as a local
percentage as shown in the
third example.

orderBy <tr ng-
repeat="movie in movieList |
orderBy : 'title'"> Displays the
collection in the order specified
by the expression. In this
example, the movie title orders
the `movieList`.

none For performance
reasons, no comparable pipe
exists in Angular. Instead, use
component code to order or sort
results. If you need the same
ordering or sorting code in
several templates, consider
building a custom pipe.

{@a controllers-components}

In both AngularJS and Angular, modules help you organize your
application into cohesive blocks of functionality.

In AngularJS, you write the code that provides the model and the
methods for the view in a controller. In Angular, you build a component.

Because much AngularJS code is in JavaScript, JavaScript code is
shown in the AngularJS column. The Angular code is shown using
TypeScript.

AngularJS Angular

IIFE (function () { ... }()); In

none This is a nonissue in
Angular because ES 2015

Modules/controllers/components

AngularJS, an immediately
invoked function expression (or
IIFE) around controller code
keeps it out of the global
namespace.

modules handle the
namespacing for you. For more
information on modules, see the
[Modules]
(guide/architecture#modules)
section of the [Architecture
Overview](guide/architecture).

Angular modules
angular.module("movieHunter",
["ngRoute"]); In AngularJS, an
Angular module keeps track of
controllers, services, and other
code. The second argument
defines the list of other
modules that this module
depends upon.

NgModules NgModules,
defined with the `NgModule`
decorator, serve the same
purpose: * `imports`: specifies
the list of other modules that this
module depends upon *
`declaration`: keeps track of your
components, pipes, and
directives. For more information
on modules, see [NgModules]
(guide/ngmodule).

Controller registration
angular
.module("movieHunter")
.controller("MovieListCtrl",
["movieService",
MovieListCtrl]); AngularJS has
code in each controller that
looks up an appropriate
Angular module and registers
the controller with that module.
The first argument is the
controller name. The second
argument defines the string
names of all dependencies
injected into this controller, and
a reference to the controller
function.

Component decorator
Angular adds a decorator to the
component class to provide any
required metadata. The
`@Component` decorator
declares that the class is a
component and provides
metadata about that component
such as its selector (or tag) and
its template. This is how you
associate a template with logic,
which is defined in the
component class. For more
information, see the
[Components]
(guide/architecture#components)
section of the [Architecture
Overview](guide/architecture)
page.

Component class In

Controller function function
MovieListCtrl(movieService) { }
In AngularJS, you write the
code for the model and
methods in a controller
function.

Angular, you create a
component class. NOTE: If you
are using TypeScript with
AngularJS, you must use the
`export` keyword to export the
component class. For more
information, see the
[Components]
(guide/architecture#components)
section of the [Architecture
Overview](guide/architecture)
page.

Dependency injection
MovieListCtrl.$inject =
['MovieService']; function
MovieListCtrl(movieService) { }
In AngularJS, you pass in any
dependencies as controller
function arguments. This
example injects a
`MovieService`. To guard
against minification problems,
tell Angular explicitly that it
should inject an instance of the
`MovieService` in the first
parameter.

Dependency injection In
Angular, you pass in
dependencies as arguments to
the component class constructor.
This example injects a
`MovieService`. The first
parameter's TypeScript type tells
Angular what to inject, even after
minification. For more
information, see the
[Dependency injection]
(guide/architecture#dependency-
injection) section of the
[Architecture Overview]
(guide/architecture).

{@a style-sheets}

Style sheets give your application a nice look. In AngularJS, you specify
the style sheets for your entire application. As the application grows over
time, the styles for the many parts of the application merge, which can
cause unexpected results. In Angular, you can still define style sheets for
your entire application. But now you can also encapsulate a style sheet
within a specific component.

Style sheets

AngularJS Angular

Link tag <link
href="styles.css"
rel="stylesheet" /> AngularJS,
uses a `link` tag in the head
section of the `index.html` file to
define the styles for the
application.

Styles configuration With
the Angular CLI, you can
configure your global styles in
the `.angular-cli.json` file. You
can rename the extension to
`.scss` to use sass. ###
StyleUrls In Angular, you can
use the `styles` or `styleUrls`
property of the `@Component`
metadata to define a style sheet
for a particular component. This
allows you to set appropriate
styles for individual components
that won’t leak into other parts
of the application.

Motion is an important aspect in the design of modern web applications. Good user interfaces transition
smoothly between states with engaging animations that call attention where it's needed. Well-designed
animations can make a UI not only more fun but also easier to use.

Angular's animation system lets you build animations that run with the same kind of native performance found
in pure CSS animations. You can also tightly integrate your animation logic with the rest of your application
code, for ease of control.

Angular animations are built on top of the standard [Web Animations API](https://w3c.github.io/web-
animations/) and run natively on [browsers that support it](http://caniuse.com/#feat=web-animation). For other
browsers, a polyfill is required. Uncomment the `web-animations-js` polyfill from the `polyfills.ts` file.
The examples in this page are available as a .

Before you can add animations to your application, you need to import a few animation-specific modules and
functions to the root application module.

The animations examples in this guide animate a list of heroes.

A Hero class has a name property, a state property that indicates if the hero is active or not, and a
toggleState() method to switch between the states.

Across the top of the screen (app.hero-team-builder.component.ts) are a series of buttons that add
and remove heroes from the list (via the HeroService). The buttons trigger changes to the list that all of
the example components see at the same time.

{@a example-transitioning-between-states}

Animations

Overview

Setup

Example basics

Transitioning between two states

You can build a simple animation that transitions an element between two states driven by a model attribute.

Animations can be defined inside @Component metadata.

With these, you can define an animation trigger called heroState in the component metadata. It uses
animations to transition between two states: active and inactive . When a hero is active, the element
appears in a slightly larger size and lighter color.

In this example, you are defining animation styles (color and transform) inline in the animation metadata.

Now, using the [@triggerName] syntax, attach the animation that you just defined to one or more
elements in the component's template.

Here, the animation trigger applies to every element repeated by an ngFor . Each of the repeated elements
animates independently. The value of the attribute is bound to the expression hero.state and is always
either active or inactive .

With this setup, an animated transition appears whenever a hero object changes state. Here's the full
component implementation:

Angular animations are defined as logical states and transitions between states.

An animation state is a string value that you define in your application code. In the example above, the states
'active' and 'inactive' are based on the logical state of hero objects. The source of the state can

be a simple object attribute, as it was in this case, or it can be a value computed in a method. The important
thing is that you can read it into the component's template.

You can define styles for each animation state:

These state definitions specify the end styles of each state. They are applied to the element once it has
transitioned to that state, and stay as long as it remains in that state. In effect, you're defining what styles the
element has in different states.

States and transitions

After you define states, you can define transitions between the states. Each transition controls the timing of
switching between one set of styles and the next:

If several transitions have the same timing configuration, you can combine them into the same transition

definition:

When both directions of a transition have the same timing, as in the previous example, you can use the
shorthand syntax <=> :

You can also apply a style during an animation but not keep it around after the animation finishes. You can
define such styles inline, in the transition . In this example, the element receives one set of styles
immediately and is then animated to the next. When the transition finishes, none of these styles are kept
because they're not defined in a state .

The * ("wildcard") state matches any animation state. This is useful for defining styles and transitions that
apply regardless of which state the animation is in. For example:

The active => * transition applies when the element's state changes from active to anything
else.
The * => * transition applies when any change between two states takes place.

The wildcard state *

The special state called void can apply to any animation. It applies when the element is not attached to a
view, perhaps because it has not yet been added or because it has been removed. The void state is useful
for defining enter and leave animations.

For example the * => void transition applies when the element leaves the view, regardless of what state it
was in before it left.

The wildcard state * also matches void .

The void state

Example: Entering and leaving

Using the void and * states you can define transitions that animate the entering and leaving of elements:

Enter: void => *

Leave: * => void

For example, in the animations array below there are two transitions that use the void => * and
* => void syntax to animate the element in and out of the view.

Note that in this case the styles are applied to the void state directly in the transition definitions, and not in a
separate state(void) definition. Thus, the transforms are different on enter and leave: the element enters
from the left and leaves to the right.

These two common animations have their own aliases: transition(':enter', [...]); // void => * transition(':leave', [
...]); // * => void

You can also combine this animation with the earlier state transition animation by using the hero state as the
animation state. This lets you configure different transitions for entering and leaving based on what the state of
the hero is:

Inactive hero enter: void => inactive

Active hero enter: void => active

Inactive hero leave: inactive => void

Example: Entering and leaving from different states

Active hero leave: active => void

This gives you fine-grained control over each transition:

Since Angular's animation support builds on top of Web Animations, you can animate any property that the
browser considers animatable. This includes positions, sizes, transforms, colors, borders, and many others.
The W3C maintains a list of animatable properties on its CSS Transitions page.

For positional properties that have a numeric value, you can define a unit by providing the value as a string with
the appropriate suffix:

'50px'

'3em'

'100%'

If you don't provide a unit when specifying dimension, Angular assumes the default of px :

50 is the same as saying '50px'

Animatable properties and units

Automatic property calculation

Sometimes you don't know the value of a dimensional style property until runtime. For example, elements often
have widths and heights that depend on their content and the screen size. These properties are often tricky to
animate with CSS.

In these cases, you can use a special * property value so that the value of the property is computed at
runtime and then plugged into the animation.

In this example, the leave animation takes whatever height the element has before it leaves and animates from
that height to zero:

There are three timing properties you can tune for every animated transition: the duration, the delay, and the
easing function. They are all combined into a single transition timing string.

The duration controls how long the animation takes to run from start to finish. You can define a duration in three
ways:

As a plain number, in milliseconds: 100

In a string, as milliseconds: '100ms'

In a string, as seconds: '0.1s'

The delay controls the length of time between the animation trigger and the beginning of the transition. You can
define one by adding it to the same string following the duration. It also has the same format options as the
duration:

Wait for 100ms and then run for 200ms: '0.2s 100ms'

Animation timing

Duration

Delay

Easing

The easing function controls how the animation accelerates and decelerates during its runtime. For example,
an ease-in function causes the animation to begin relatively slowly but pick up speed as it progresses. You
can control the easing by adding it as a third value in the string after the duration and the delay (or as the
second value when there is no delay):

Wait for 100ms and then run for 200ms, with easing: '0.2s 100ms ease-out'

Run for 200ms, with easing: '0.2s ease-in-out'

Here are a couple of custom timings in action. Both enter and leave last for 200 milliseconds, that is 0.2s ,
but they have different easings. The leave begins after a slight delay of 10 milliseconds as specified in
'0.2s 10 ease-out' :

Animation keyframes go beyond a simple transition to a more intricate animation that goes through one or
more intermediate styles when transitioning between two sets of styles.

For each keyframe, you specify an offset that defines at which point in the animation that keyframe applies.
The offset is a number between zero, which marks the beginning of the animation, and one, which marks the
end.

Example

Multi-step animations with keyframes

This example adds some "bounce" to the enter and leave animations with keyframes:

Note that the offsets are not defined in terms of absolute time. They are relative measures from zero to one.
The final timeline of the animation is based on the combination of keyframe offsets, duration, delay, and easing.

Defining offsets for keyframes is optional. If you omit them, offsets with even spacing are automatically
assigned. For example, three keyframes without predefined offsets receive offsets 0 , 0.5 , and 1 .

You've seen how to animate multiple style properties at the same time: just put all of them into the same
style() definition.

But you may also want to configure different timings for animations that happen in parallel. For example, you
may want to animate two CSS properties but use a different easing function for each one.

For this you can use animation groups. In this example, using groups both on enter and leave allows for two
different timing configurations. Both are applied to the same element in parallel, but run independently of each
other:

One group animates the element transform and width; the other group animates the opacity.

A callback is fired when an animation is started and also when it is done.

In the keyframes example, you have a trigger called @flyInOut . You can hook those callbacks like
this:

The callbacks receive an AnimationEvent that contains useful properties such as fromState ,
toState and totalTime .

Parallel animation groups

Animation callbacks

Those callbacks will fire whether or not an animation is picked up.

The Angular Ahead-of-Time (AOT) compiler converts your Angular HTML and TypeScript code into efficient JavaScript code during the build phase before the browser downloads and
runs that code.

This guide explains how to build with the AOT compiler and how to write Angular metadata that AOT can compile.

Watch compiler author Tobias Bosch explain the Angular Compiler at AngularConnect 2016.

{@a overview}

An Angular application consists largely of components and their HTML templates. Before the browser can render the application, the components and templates must be converted to
executable JavaScript by an Angular compiler.

Angular offers two ways to compile your application:

1. Just-in-Time (JIT), which compiles your app in the browser at runtime
2. Ahead-of-Time (AOT), which compiles your app at build time.

JIT compilation is the default when you run the build-only or the build-and-serve-locally CLI commands:

ng build ng serve

{@a compile}

For AOT compilation, append the --aot flags to the build-only or the build-and-serve-locally CLI commands:

ng build --aot ng serve --aot

The `--prod` meta-flag compiles with AOT by default. See the [CLI documentation](https://github.com/angular/angular-cli/wiki) for details, especially the [`build` topic]
(https://github.com/angular/angular-cli/wiki/build).

{@a why-aot}

Faster rendering

With AOT, the browser downloads a pre-compiled version of the application. The browser loads executable code so it can render the application immediately, without waiting to compile
the app first.

Fewer asynchronous requests

The compiler inlines external HTML templates and CSS style sheets within the application JavaScript, eliminating separate ajax requests for those source files.

Smaller Angular framework download size

There's no need to download the Angular compiler if the app is already compiled. The compiler is roughly half of Angular itself, so omitting it dramatically reduces the application payload.

Detect template errors earlier

The AOT compiler detects and reports template binding errors during the build step before users can see them.

Better security

AOT compiles HTML templates and components into JavaScript files long before they are served to the client. With no templates to read and no risky client-side HTML or JavaScript
evaluation, there are fewer opportunities for injection attacks.

The Angular AOT compiler extracts and interprets metadata about the parts of the application that Angular is supposed to manage.

Angular metadata tells Angular how to construct instances of your application classes and interact with them at runtime.

The Ahead-of-Time (AOT) Compiler

Angular compilation

Why compile with AOT?

Angular Metadata and AOT

You specify the metadata with decorators such as @Component() and @Input() . You also specify metadata implicitly in the constructor declarations of these decorated classes.

In the following example, the @Component() metadata object and the class constructor tell Angular how to create and display an instance of TypicalComponent .

@Component({
 selector: 'app-typical',
 template: '<div>A typical component for {{data.name}}</div>'
)}
export class TypicalComponent {
 @Input() data: TypicalData;
 constructor(private someService: SomeService) { ... }
}

The Angular compiler extracts the metadata once and generates a factory for TypicalComponent . When it needs to create a TypicalComponent instance, Angular calls the
factory, which produces a new visual element, bound to a new instance of the component class with its injected dependency.

You write metadata in a subset of TypeScript that must conform to the following general constraints:

1. Limit expression syntax to the supported subset of JavaScript.
2. Only reference exported symbols after code folding.
3. Only call functions supported by the compiler.
4. Decorated and data-bound class members must be public.

The next sections elaborate on these points.

It helps to think of the AOT compiler as having two phases: a code analysis phase in which it simply records a representation of the source; and a code generation phase in which the
compiler's StaticReflector handles the interpretation as well as places restrictions on what it interprets.

The TypeScript compiler does some of the analytic work of the first phase. It emits the .d.ts type definition files with type information that the AOT compiler needs to generate
application code.

At the same time, the AOT collector analyzes the metadata recorded in the Angular decorators and outputs metadata information in .metadata.json files, one per .d.ts file.

You can think of .metadata.json as a diagram of the overall structure of a decorator's metadata, represented as an abstract syntax tree (AST).

Angular's [schema.ts](https://github.com/angular/angular/blob/master/packages/compiler-cli/src/metadata/schema.ts) describes the JSON format as a collection of TypeScript interfaces.

{@a expression-syntax}

The collector only understands a subset of JavaScript. Define metadata objects with the following limited syntax:

Metadata restrictions

How AOT works

Phase 1: analysis

Expression syntax

Syntax Example

Literal object {cherry: true, apple: true, mincemeat: false}

Literal array ['cherries', 'flour', 'sugar']

Spread in literal array ['apples', 'flour', ...the_rest]

Calls bake(ingredients)

New new Oven()

Property access pie.slice

Array index ingredients[0]

Identifier reference Component

A template string `pie is ${multiplier} times better than cake`

Literal string 'pi'

Literal number 3.14153265

Literal boolean true

Literal null null

Supported prefix operator !cake

Supported Binary operator a + b

Conditional operator a ? b : c

Parentheses (a + b)

If an expression uses unsupported syntax, the collector writes an error node to the .metadata.json file. The compiler later reports the error if it needs that piece of metadata to
generate the application code.

If you want `ngc` to report syntax errors immediately rather than produce a `.metadata.json` file with errors, set the `strictMetadataEmit` option in `tsconfig`. ``` "angularCompilerOptions":
{ ... "strictMetadataEmit" : true } ``` Angular libraries have this option to ensure that all Angular `.metadata.json` files are clean and it is a best practice to do the same when building your
own libraries.

{@a function-expression} {@a arrow-functions}

The AOT compiler does not support function expressions and arrow functions, also called lambda functions.

Consider the following component decorator:

@Component({
 ...
 providers: [{provide: server, useFactory: () => new Server()}]
})

The AOT collector does not support the arrow function, () => new Server() , in a metadata expression. It generates an error node in place of the function.

When the compiler later interprets this node, it reports an error that invites you to turn the arrow function into an exported function.

You can fix the error by converting to this:

export function serverFactory() {
 return new Server();
}

@Component({
 ...
 providers: [{provide: server, useFactory: serverFactory}]
})

Beginning in version 5, the compiler automatically performs this rewritting while emitting the .js file.

No arrow functions

The collector can represent a function call or object creation with new as long as the syntax is valid. The collector only cares about proper syntax.

But beware. The compiler may later refuse to generate a call to a particular function or creation of a particular object. The compiler only supports calls to a small set of functions and will
use new for only a few designated classes. These functions and classes are in a table of below.

{@a exported-symbols} The compiler can only resolve references to exported symbols. Fortunately, the collector enables limited use of non-exported symbols through folding.

The collector may be able to evaluate an expression during collection and record the result in the .metadata.json instead of the original expression.

For example, the collector can evaluate the expression 1 + 2 + 3 + 4 and replace it with the result, 10 .

This process is called folding. An expression that can be reduced in this manner is foldable.

{@a var-declaration} The collector can evaluate references to module-local const declarations and initialized var and let declarations, effectively removing them from the
.metadata.json file.

Consider the following component definition:

const template = '<div>{{hero.name}}</div>';

@Component({
 selector: 'app-hero',
 template: template
})
export class HeroComponent {
 @Input() hero: Hero;
}

The compiler could not refer to the template constant because it isn't exported.

But the collector can fold the template constant into the metadata definition by inlining its contents. The effect is the same as if you had written:

@Component({
 selector: 'app-hero',
 template: '<div>{{hero.name}}</div>'
})
export class HeroComponent {
 @Input() hero: Hero;
}

There is no longer a reference to template and, therefore, nothing to trouble the compiler when it later interprets the collector's output in .metadata.json .

You can take this example a step further by including the template constant in another expression:

const template = '<div>{{hero.name}}</div>';

@Component({
 selector: 'app-hero',
 template: template + '<div>{{hero.title}}</div>'
})
export class HeroComponent {
 @Input() hero: Hero;
}

The collector reduces this expression to its equivalent folded string:

'<div>{{hero.name}}</div><div>{{hero.title}}</div>' .

The following table describes which expressions the collector can and cannot fold:

Limited function calls

Folding

Foldable syntax

Syntax Foldable

Literal object yes

Literal array yes

Spread in literal array no

Calls no

New no

Property access yes, if target is foldable

Array index yes, if target and index are foldable

Identifier reference yes, if it is a reference to a local

A template with no substitutions yes

A template with substitutions yes, if the substitutions are foldable

Literal string yes

Literal number yes

Literal boolean yes

Literal null yes

Supported prefix operator yes, if operand is foldable

Supported binary operator yes, if both left and right are foldable

Conditional operator yes, if condition is foldable

Parentheses yes, if the expression is foldable

If an expression is not foldable, the collector writes it to .metadata.json as an AST for the compiler to resolve.

The collector makes no attempt to understand the metadata that it collects and outputs to .metadata.json . It represents the metadata as best it can and records errors when it
detects a metadata syntax violation.

It's the compiler's job to interpret the .metadata.json in the code generation phase.

The compiler understands all syntax forms that the collector supports, but it may reject syntactically correct metadata if the semantics violate compiler rules.

The compiler can only reference exported symbols.

Decorated component class members must be public. You cannot make an @Input() property private or internal.

Data bound properties must also be public.

// BAD CODE - title is private
@Component({
 selector: 'app-root',
 template: '<h1>{{title}}</h1>'
})
export class AppComponent {
 private title = 'My App'; // Bad
}

{@a supported-functions} Most importantly, the compiler only generates code to create instances of certain classes, support certain decorators, and call certain functions from the
following lists.

The compiler only allows metadata that create instances of the class InjectionToken from @angular/core .

Phase 2: code generation

New instances

Annotations/Decorators

The compiler only supports metadata for these Angular decorators.

Decorator Module

Attribute @angular/core

Component @angular/core

ContentChild @angular/core

ContentChildren @angular/core

Directive @angular/core

Host @angular/core

HostBinding @angular/core

HostListener @angular/core

Inject @angular/core

Injectable @angular/core

Input @angular/core

NgModule @angular/core

Optional @angular/core

Output @angular/core

Pipe @angular/core

Self @angular/core

SkipSelf @angular/core

ViewChild @angular/core

The compiler also supports macros in the form of functions or static methods that return an expression.

For example, consider the following function:

export function wrapInArray<T>(value: T): T[] {
 return [value];
}

You can call the wrapInArray in a metadata definition because it returns the value of an expression that conforms to the compiler's restrictive JavaScript subset.

You might use wrapInArray() like this:

@NgModule({
 declarations: wrapInArray(TypicalComponent)
})
export class TypicalModule {}

The compiler treats this usage as if you had written:

@NgModule({
 declarations: [TypicalComponent]
})
export class TypicalModule {}

The collector is simplistic in its determination of what qualifies as a macro function; it can only contain a single return statement.

The Angular RouterModule exports two macro static methods, forRoot and forChild , to help declare root and child routes. Review the source code for these methods to
see how macros can simplify configuration of complex NgModules.

Macro-functions and macro-static methods

Metadata rewriting

The compiler treats object literals containing the fields useClass , useValue , useFactory , and data specially. The compiler converts the expression initializing one of these
fields into an exported variable, which replaces the expression. This process of rewriting these expressions removes all the restrictions on what can be in them because the compiler
doesn't need to know the expression's value—it just needs to be able to generate a reference to the value.

You might write something like:

class TypicalServer {

}

@NgModule({
 providers: [{provide: SERVER, useFactory: () => TypicalServer}]
})
export class TypicalModule {}

Without rewriting, this would be invalid because lambdas are not supported and TypicalServer is not exported.

To allow this, the compiler automatically rewrites this to something like:

class TypicalServer {

}

export const ɵ0 = () => new TypicalServer();

@NgModule({
 providers: [{provide: SERVER, useFactory: ɵ0}]
})
export class TypicalModule {}

This allows the compiler to generate a reference to ɵ0 in the factory without having to know what the value of ɵ0 contains.

The compiler does the rewriting during the emit of the .js file. This doesn't rewrite the .d.ts file, however, so TypeScript doesn't recognize it as being an export. Thus, it does not
pollute the ES module's exported API.

The following are metadata errors you may encounter, with explanations and suggested corrections.

Expression form not supported
Reference to a local (non-exported) symbol
Only initialized variables and constants
Reference to a non-exported class
Reference to a non-exported function
Function calls are not supported
Destructured variable or constant not supported
Could not resolve type
Name expected
Unsupported enum member name
Tagged template expressions are not supported
Symbol reference expected

The compiler encountered an expression it didn't understand while evalutating Angular metadata.

Language features outside of the compiler's restricted expression syntax can produce this error, as seen in the following example:

// ERROR
export class Fooish { ... }
...
const prop = typeof Fooish; // typeof is not valid in metadata
 ...
 // bracket notation is not valid in metadata
 { provide: 'token', useValue: { [prop]: 'value' } };
 ...

Metadata Errors

Expression form not supported

You can use typeof and bracket notation in normal application code. You just can't use those features within expressions that define Angular metadata.

Avoid this error by sticking to the compiler's restricted expression syntax when writing Angular metadata and be wary of new or unusual TypeScript features.

{@a reference-to-a-local-symbol}

Reference to a local (non-exported) symbol 'symbol name'. Consider exporting the symbol.

The compiler encountered a referenced to a locally defined symbol that either wasn't exported or wasn't initialized.

Here's a provider example of the problem.

// ERROR
let foo: number; // neither exported nor initialized

@Component({
 selector: 'my-component',
 template: ... ,
 providers: [
 { provide: Foo, useValue: foo }
]
})
export class MyComponent {}

The compiler generates the component factory, which includes the useValue provider code, in a separate module. That factory module can't reach back to this source module to
access the local (non-exported) foo variable.

You could fix the problem by initializing foo .

let foo = 42; // initialized

The compiler will fold the expression into the provider as if you had written this.

 providers: [
 { provide: Foo, useValue: 42 }
]

Alternatively, you can fix it by exporting foo with the expectation that foo will be assigned at runtime when you actually know its value.

// CORRECTED
export let foo: number; // exported

@Component({
 selector: 'my-component',
 template: ... ,
 providers: [
 { provide: Foo, useValue: foo }
]
})
export class MyComponent {}

Adding export often works for variables referenced in metadata such as providers and animations because the compiler can generate references to the exported variables
in these expressions. It doesn't need the values of those variables.

Adding export doesn't work when the compiler needs the actual value in order to generate code. For example, it doesn't work for the template property.

// ERROR
export let someTemplate: string; // exported but not initialized

@Component({
 selector: 'my-component',
 template: someTemplate
})
export class MyComponent {}

The compiler needs the value of the template property right now to generate the component factory. The variable reference alone is insufficient. Prefixing the declaration with

Reference to a local (non-exported) symbol

export merely produces a new error, " Only initialized variables and constants can be referenced ".

{@a only-initialized-variables}

Only initialized variables and constants can be referenced because the value of this variable is needed by the template compiler.

The compiler found a reference to an exported variable or static field that wasn't initialized. It needs the value of that variable to generate code.

The following example tries to set the component's template property to the value of the exported someTemplate variable which is declared but unassigned.

// ERROR
export let someTemplate: string;

@Component({
 selector: 'my-component',
 template: someTemplate
})
export class MyComponent {}

You'd also get this error if you imported someTemplate from some other module and neglected to initialize it there.

// ERROR - not initialized there either
import { someTemplate } from './config';

@Component({
 selector: 'my-component',
 template: someTemplate
})
export class MyComponent {}

The compiler cannot wait until runtime to get the template information. It must statically derive the value of the someTemplate variable from the source code so that it can generate
the component factory, which includes instructions for building the element based on the template.

To correct this error, provide the initial value of the variable in an initializer clause on the same line.

// CORRECTED
export let someTemplate = '<h1>Greetings from Angular</h1>';

@Component({
 selector: 'my-component',
 template: someTemplate
})
export class MyComponent {}

Reference to a non-exported class . Consider exporting the class.

Metadata referenced a class that wasn't exported.

For example, you may have defined a class and used it as an injection token in a providers array but neglected to export that class.

// ERROR
abstract class MyStrategy { }

 ...
 providers: [
 { provide: MyStrategy, useValue: ... }
]
 ...

Angular generates a class factory in a separate module and that factory can only access exported classes. To correct this error, export the referenced class.

Only initialized variables and constants

Reference to a non-exported class

// CORRECTED
export abstract class MyStrategy { }

 ...
 providers: [
 { provide: MyStrategy, useValue: ... }
]
 ...

Metadata referenced a function that wasn't exported.

For example, you may have set a providers useFactory property to a locally defined function that you neglected to export.

// ERROR
function myStrategy() { ... }

 ...
 providers: [
 { provide: MyStrategy, useFactory: myStrategy }
]
 ...

Angular generates a class factory in a separate module and that factory can only access exported functions. To correct this error, export the function.

// CORRECTED
export function myStrategy() { ... }

 ...
 providers: [
 { provide: MyStrategy, useFactory: myStrategy }
]
 ...

{@a function-calls-not-supported}

Function calls are not supported. Consider replacing the function or lambda with a reference to an exported function.

The compiler does not currently support function expressions or lambda functions. For example, you cannot set a provider's useFactory to an anonymous function or arrow function
like this.

// ERROR
 ...
 providers: [
 { provide: MyStrategy, useFactory: function() { ... } },
 { provide: OtherStrategy, useFactory: () => { ... } }
]
 ...

You also get this error if you call a function or method in a provider's useValue . ``` // ERROR import { calculateValue } from './utilities';

... providers: [{ provide: SomeValue, useValue: calculateValue() }] ... ```

To correct this error, export a function from the module and refer to the function in a useFactory provider instead.

// CORRECTED import { calculateValue } from './utilities';

export function myStrategy() { ... } export function otherStrategy() { ... } export function someValueFactory() { return calculateValue(); } ... providers: [{ provide: MyStrategy, useFactory:
myStrategy }, { provide: OtherStrategy, useFactory: otherStrategy }, { provide: SomeValue, useFactory: someValueFactory }] ...

{@a destructured-variable-not-supported}

Reference to a non-exported function

Function calls are not supported

Destructured variable or constant not supported

Referencing an exported destructured variable or constant is not supported by the template compiler. Consider simplifying this to avoid destructuring.

The compiler does not support references to variables assigned by destructuring.

For example, you cannot write something like this:

// ERROR import { configuration } from './configuration';

// destructured assignment to foo and bar const {foo, bar} = configuration; ... providers: [{provide: Foo, useValue: foo}, {provide: Bar, useValue: bar},] ...

To correct this error, refer to non-destructured values.

// CORRECTED import { configuration } from './configuration'; ... providers: [{provide: Foo, useValue: configuration.foo}, {provide: Bar, useValue: configuration.bar},] ...

The compiler encountered a type and can't determine which module exports that type.

This can happen if you refer to an ambient type. For example, the Window type is an ambiant type declared in the global .d.ts file.

You'll get an error if you reference it in the component constructor, which the compiler must statically analyze.

// ERROR
@Component({ })
export class MyComponent {
 constructor (private win: Window) { ... }
}

TypeScript understands ambiant types so you don't import them. The Angular compiler does not understand a type that you neglect to export or import.

In this case, the compiler doesn't understand how to inject something with the Window token.

Do not refer to ambient types in metadata expressions.

If you must inject an instance of an ambiant type, you can finesse the problem in four steps:

1. Create an injection token for an instance of the ambiant type.
2. Create a factory function that returns that instance.
3. Add a useFactory provider with that factory function.
4. Use @Inject to inject the instance.

Here's an illustrative example.

// CORRECTED import { Inject } from '@angular/core';

export const WINDOW = new InjectionToken('Window'); export function _window() { return window; }

@Component({ ... providers: [{ provide: WINDOW, useFactory: _window }] }) export class MyComponent { constructor (@Inject(WINDOW) private win: Window) { ... } }

The Window type in the constructor is no longer a problem for the compiler because it uses the @Inject(WINDOW) to generate the injection code.

Angular does something similar with the DOCUMENT token so you can inject the browser's document object (or an abstraction of it, depending upon the platform in which the
application runs).

import { Inject } from '@angular/core'; import { DOCUMENT } from '@angular/platform-browser';

@Component({ ... }) export class MyComponent { constructor (@Inject(DOCUMENT) private doc: Document) { ... } }

The compiler expected a name in an expression it was evaluating. This can happen if you use a number as a property name as in the following example.

// ERROR
provider: [{ provide: Foo, useValue: { 0: 'test' } }]

Change the name of the property to something non-numeric.

Could not resolve type

Name expected

// CORRECTED
provider: [{ provide: Foo, useValue: { '0': 'test' } }]

Angular couldn't determine the value of the enum member that you referenced in metadata.

The compiler can understand simple enum values but not complex values such as those derived from computed properties.

// ERROR enum Colors { Red = 1, White, Blue = "Blue".length // computed }

... providers: [{ provide: BaseColor, useValue: Colors.White } // ok { provide: DangerColor, useValue: Colors.Red } // ok { provide: StrongColor, useValue: Colors.Blue } // bad] ...

Avoid referring to enums with complicated initializers or computed properties.

{@a tagged-template-expressions-not-supported}

Tagged template expressions are not supported in metadata.

The compiler encountered a JavaScript ES2015 tagged template expression such as,
// ERROR const expression = 'funky'; const raw = String.raw`A tagged template ${expression} string`; ... template: '<div>' + raw + '</div>' ...

String.raw() is a tag function native to JavaScript ES2015.

The AOT compiler does not support tagged template expressions; avoid them in metadata expressions.

The compiler expected a reference to a symbol at the location specified in the error message.

This error can occur if you use an expression in the extends clause of a class.

What the AOT compiler does and why it is important.
Why metadata must be written in a subset of JavaScript.
What that subset is.
Other restrictions on metadata definition.
Macro-functions and macro-static methods.
Compiler errors related to metadata.

Unsupported enum member name

Tagged template expressions are not supported

Symbol reference expected

Summary

Angular is a framework for building client applications in HTML and either JavaScript or a language like
TypeScript that compiles to JavaScript.

The framework consists of several libraries, some of them core and some optional.

You write Angular applications by composing HTML templates with Angularized markup, writing component
classes to manage those templates, adding application logic in services, and boxing components and services
in modules.

Then you launch the app by bootstrapping the root module. Angular takes over, presenting your application
content in a browser and responding to user interactions according to the instructions you've provided.

Of course, there is more to it than this. You'll learn the details in the pages that follow. For now, focus on the big
picture.

The code referenced on this page is available as a .

Architecture Overview

Modules

Angular apps are modular and Angular has its own modularity system called NgModules.

NgModules are a big deal. This page introduces modules; the NgModules page covers them in depth.

Every Angular app has at least one NgModule class, the root module, conventionally named AppModule .

While the root module may be the only module in a small application, most apps have many more feature
modules, each a cohesive block of code dedicated to an application domain, a workflow, or a closely related
set of capabilities.

An NgModule, whether a root or feature, is a class with an @NgModule decorator.

Decorators are functions that modify JavaScript classes. Angular has many decorators that attach metadata to
classes so that it knows what those classes mean and how they should work. Learn more about decorators on
the web.

NgModule is a decorator function that takes a single metadata object whose properties describe the
module. The most important properties are: * declarations - the view classes that belong to this module.
Angular has three kinds of view classes: components, directives, and pipes.

exports - the subset of declarations that should be visible and usable in the component templates of
other modules.

imports - other modules whose exported classes are needed by component templates declared in this
module.

providers - creators of services that this module contributes to the global collection of services; they
become accessible in all parts of the app.

bootstrap - the main application view, called the root component, that hosts all other app views. Only
the root module should set this bootstrap property.

Here's a simple root module:

The `export` of `AppComponent` is just to show how to use the `exports` array to export a component; it isn't
actually necessary in this example. A root module has no reason to _export_ anything because other
components don't need to _import_ the root module.

Launch an application by bootstrapping its root module. During development you're likely to bootstrap the
AppModule in a main.ts file like this one.

The NgModule — a class decorated with @NgModule — is a fundamental feature of Angular.

JavaScript also has its own module system for managing collections of JavaScript objects. It's completely
different and unrelated to the NgModule system.

In JavaScript each file is a module and all objects defined in the file belong to that module. The module
declares some objects to be public by marking them with the export key word. Other JavaScript modules
use import statements to access public objects from other modules.

Learn more about the JavaScript module system on the web.

These are two different and complementary module systems. Use them both to write your apps.

Angular ships as a collection of JavaScript modules. You can think of them as library modules.

Each Angular library name begins with the @angular prefix.

You install them with the npm package manager and import parts of them with JavaScript import

statements.

NgModules vs. JavaScript modules

Angular libraries

For example, import Angular's Component decorator from the @angular/core library like this:

You also import NgModules from Angular libraries using JavaScript import statements:

In the example of the simple root module above, the application module needs material from within that
BrowserModule . To access that material, add it to the @NgModule metadata imports like this.

In this way you're using both the Angular and JavaScript module systems together.

It's easy to confuse the two systems because they share the common vocabulary of "imports" and "exports".
Hang in there. The confusion yields to clarity with time and experience.

Learn more from the [NgModules](guide/ngmodule) page.

A component controls a patch of screen called a view.

For example, the following views are controlled by components:

The app root with the navigation links.
The list of heroes.
The hero editor.

You define a component's application logic—what it does to support the view—inside a class. The class
interacts with the view through an API of properties and methods.

{@a component-code}

For example, this HeroListComponent has a heroes property that returns an array of heroes that it
acquires from a service. HeroListComponent also has a selectHero() method that sets a
selectedHero property when the user clicks to choose a hero from that list.

Angular creates, updates, and destroys components as the user moves through the application. Your app can

Components

take action at each moment in this lifecycle through optional lifecycle hooks, like ngOnInit() declared
above.

You define a component's view with its companion template. A template is a form of HTML that tells Angular
how to render the component.

A template looks like regular HTML, except for a few differences. Here is a template for our
HeroListComponent :

Although this template uses typical HTML elements like <h2> and <p> , it also has some differences.
Code like *ngFor , {{hero.name}} , (click) , [hero] , and <hero-detail> uses Angular's
template syntax.

In the last line of the template, the <hero-detail> tag is a custom element that represents a new
component, HeroDetailComponent .

The HeroDetailComponent is a different component than the HeroListComponent you've been
reviewing. The HeroDetailComponent (code not shown) presents facts about a particular hero, the hero
that the user selects from the list presented by the HeroListComponent . The HeroDetailComponent

is a child of the HeroListComponent .

Templates

Notice how <hero-detail> rests comfortably among native HTML elements. Custom components mix
seamlessly with native HTML in the same layouts.

Metadata tells Angular how to process a class.

Looking back at the code for HeroListComponent , you can see that it's just a class. There is no evidence
of a framework, no "Angular" in it at all.

In fact, HeroListComponent really is just a class. It's not a component until you tell Angular about it.

To tell Angular that HeroListComponent is a component, attach metadata to the class.

In TypeScript, you attach metadata by using a decorator. Here's some metadata for HeroListComponent :

Here is the @Component decorator, which identifies the class immediately below it as a component class.

The @Component decorator takes a required configuration object with the information Angular needs to
create and present the component and its view.

Here are a few of the most useful @Component configuration options:

selector : CSS selector that tells Angular to create and insert an instance of this component where it

Metadata

finds a <hero-list> tag in parent HTML. For example, if an app's HTML contains
<hero-list></hero-list> , then Angular inserts an instance of the HeroListComponent view

between those tags.

templateUrl : module-relative address of this component's HTML template, shown above.

providers : array of dependency injection providers for services that the component requires. This
is one way to tell Angular that the component's constructor requires a HeroService so it can get the
list of heroes to display.

The metadata in the @Component tells Angular where to get the major building blocks you specify for the
component.

The template, metadata, and component together describe a view.

Apply other metadata decorators in a similar fashion to guide Angular behavior. @Injectable , @Input ,
and @Output are a few of the more popular decorators.

The architectural takeaway is that you must add metadata to your code so that Angular knows what to do.

Without a framework, you would be responsible for pushing data values into the HTML controls and turning
user responses into actions and value updates. Writing such push/pull logic by hand is tedious, error-prone,
and a nightmare to read as any experienced jQuery programmer can attest.

Data binding

Angular supports data binding, a mechanism for coordinating parts of a template with parts of a component.
Add binding markup to the template HTML to tell Angular how to connect both sides.

As the diagram shows, there are four forms of data binding syntax. Each form has a direction — to the DOM,
from the DOM, or in both directions.

The HeroListComponent example template has three forms:

The {{hero.name}} interpolation displays the component's hero.name property value within the
 element.

The [hero] property binding passes the value of selectedHero from the parent
HeroListComponent to the hero property of the child HeroDetailComponent .

The (click) event binding calls the component's selectHero method when the user clicks a
hero's name.

Two-way data binding is an important fourth form that combines property and event binding in a single
notation, using the ngModel directive. Here's an example from the HeroDetailComponent template:

In two-way binding, a data property value flows to the input box from the component as with property binding.
The user's changes also flow back to the component, resetting the property to the latest value, as with event
binding.

Angular processes all data bindings once per JavaScript event cycle, from the root of the application
component tree through all child components.

Data binding plays an important role in communication between a template and its component.

Data binding is also important for communication between parent and child components.

Angular templates are dynamic. When Angular renders them, it transforms the DOM according to the
instructions given by directives.

A directive is a class with a @Directive decorator. A component is a directive-with-a-template; a
@Component decorator is actually a @Directive decorator extended with template-oriented features.

Directives

While **a component is technically a directive**, components are so distinctive and central to Angular
applications that this architectural overview separates components from directives.

Two other kinds of directives exist: structural and attribute directives.

They tend to appear within an element tag as attributes do, sometimes by name but more often as the target of
an assignment or a binding.

Structural directives alter layout by adding, removing, and replacing elements in DOM.

The example template uses two built-in structural directives:

*ngFor tells Angular to stamp out one per hero in the heroes list.
*ngIf includes the HeroDetail component only if a selected hero exists.

Attribute directives alter the appearance or behavior of an existing element. In templates they look like regular
HTML attributes, hence the name.

The ngModel directive, which implements two-way data binding, is an example of an attribute directive.
ngModel modifies the behavior of an existing element (typically an <input>) by setting its display value

property and responding to change events.

Angular has a few more directives that either alter the layout structure (for example, ngSwitch) or modify
aspects of DOM elements and components (for example, ngStyle and ngClass).

Of course, you can also write your own directives. Components such as HeroListComponent are one kind
of custom directive.

Service is a broad category encompassing any value, function, or feature that your application needs.

Almost anything can be a service. A service is typically a class with a narrow, well-defined purpose. It should do
something specific and do it well.

Services

Examples include:

logging service
data service
message bus
tax calculator
application configuration

There is nothing specifically Angular about services. Angular has no definition of a service. There is no service
base class, and no place to register a service.

Yet services are fundamental to any Angular application. Components are big consumers of services.

Here's an example of a service class that logs to the browser console:

Here's a HeroService that uses a Promise to fetch heroes. The HeroService depends on the
Logger service and another BackendService that handles the server communication grunt work.

Services are everywhere.

Component classes should be lean. They don't fetch data from the server, validate user input, or log directly to
the console. They delegate such tasks to services.

A component's job is to enable the user experience and nothing more. It mediates between the view (rendered
by the template) and the application logic (which often includes some notion of a model). A good component
presents properties and methods for data binding. It delegates everything nontrivial to services.

Angular doesn't enforce these principles. It won't complain if you write a "kitchen sink" component with 3000
lines.

Angular does help you follow these principles by making it easy to factor your application logic into services
and make those services available to components through dependency injection.

Dependency injection is a way to supply a new instance of a class with the fully-formed dependencies it

Dependency injection

requires. Most dependencies are services. Angular uses dependency injection to provide new components with
the services they need.

Angular can tell which services a component needs by looking at the types of its constructor parameters. For
example, the constructor of your HeroListComponent needs a HeroService :

When Angular creates a component, it first asks an injector for the services that the component requires.

An injector maintains a container of service instances that it has previously created. If a requested service
instance is not in the container, the injector makes one and adds it to the container before returning the service
to Angular. When all requested services have been resolved and returned, Angular can call the component's
constructor with those services as arguments. This is dependency injection.

The process of HeroService injection looks a bit like this:

If the injector doesn't have a HeroService , how does it know how to make one?

In brief, you must have previously registered a provider of the HeroService with the injector. A provider is
something that can create or return a service, typically the service class itself.

You can register providers in modules or in components.

In general, add providers to the root module so that the same instance of a service is available everywhere.

Alternatively, register at a component level in the providers property of the @Component metadata:

Registering at a component level means you get a new instance of the service with each new instance of that
component.

Points to remember about dependency injection:

Dependency injection is wired into the Angular framework and used everywhere.

The injector is the main mechanism.

An injector maintains a container of service instances that it created.
An injector can create a new service instance from a provider.

A provider is a recipe for creating a service.

Register providers with injectors.

You've learned the basics about the eight main building blocks of an Angular application:

Modules
Components
Templates
Metadata
Data binding
Directives
Services
Dependency injection

That's a foundation for everything else in an Angular application, and it's more than enough to get going. But it
doesn't include everything you need to know.

Here is a brief, alphabetical list of other important Angular features and services. Most of them are covered in
this documentation (or soon will be).

Animations: Animate component behavior without deep knowledge of animation techniques or CSS with
Angular's animation library.

Change detection: The change detection documentation will cover how Angular decides that a
component property value has changed, when to update the screen, and how it uses zones to intercept
asynchronous activity and run its change detection strategies.

Events: The events documentation will cover how to use components and services to raise events with
mechanisms for publishing and subscribing to events.

Forms: Support complex data entry scenarios with HTML-based validation and dirty checking.

Wrap up

HTTP: Communicate with a server to get data, save data, and invoke server-side actions with an HTTP
client.

Lifecycle hooks: Tap into key moments in the lifetime of a component, from its creation to its destruction,
by implementing the lifecycle hook interfaces.

Pipes: Use pipes in your templates to improve the user experience by transforming values for display.
Consider this currency pipe expression:

price | currency:'USD':true

It displays a price of 42.33 as $42.33 .

Router: Navigate from page to page within the client application and never leave the browser.

Testing: Run unit tests on your application parts as they interact with the Angular framework using the
Angular Testing Platform.

An Attribute directive changes the appearance or behavior of a DOM element.

Try the .

{@a directive-overview}

There are three kinds of directives in Angular:

1. Components—directives with a template.
2. Structural directives—change the DOM layout by adding and removing DOM elements.
3. Attribute directives—change the appearance or behavior of an element, component, or another directive.

Components are the most common of the three directives. You saw a component for the first time in the
QuickStart guide.

Structural Directives change the structure of the view. Two examples are NgFor and NgIf. Learn about them in
the Structural Directives guide.

Attribute directives are used as attributes of elements. The built-in NgStyle directive in the Template Syntax
guide, for example, can change several element styles at the same time.

An attribute directive minimally requires building a controller class annotated with @Directive , which
specifies the selector that identifies the attribute. The controller class implements the desired directive
behavior.

This page demonstrates building a simple appHighlight attribute directive to set an element's background color
when the user hovers over that element. You can apply it like this:

{@a write-directive}

Attribute Directives

Directives overview

Build a simple attribute directive

Write the directive code

Create the directive class file in a terminal window with this CLI command.

ng generate directive highlight

The CLI creates src/app/highlight.directive.ts , a corresponding test file (.../spec.ts , and
declares the directive class in the root AppModule .

Directives must be declared in [Angular Modules](guide/ngmodule) in the same manner as _components_.
The generated `src/app/highlight.directive.ts` is as follows: The imported `Directive` symbol provides the
Angular the `@Directive` decorator. The `@Directive` decorator's lone configuration property specifies the
directive's [CSS attribute selector](https://developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors),
`[appHighlight]`. It's the brackets (`[]`) that make it an attribute selector. Angular locates each element in the
template that has an attribute named `appHighlight` and applies the logic of this directive to that element. The
attribute selector pattern explains the name of this kind of directive.
Why not "highlight"? Though *highlight* would be a more concise selector than *appHighlight* and it
would work, the best practice is to prefix selector names to ensure they don't conflict with standard HTML
attributes. This also reduces the risk of colliding with third-party directive names. The CLI added the `app`
prefix for you. Make sure you do **not** prefix the `highlight` directive name with **`ng`** because that prefix is
reserved for Angular and using it could cause bugs that are difficult to diagnose.

After the @Directive metadata comes the directive's controller class, called HighlightDirective ,
which contains the (currently empty) logic for the directive. Exporting HighlightDirective makes the
directive accessible.

Now edit the generated src/app/highlight.directive.ts to look as follows:

The import statement specifies an additional ElementRef symbol from the Angular core library:

You use the ElementRef in the directive's constructor to inject a reference to the host DOM element, the
element to which you applied appHighlight .

ElementRef grants direct access to the host DOM element through its nativeElement property.

This first implementation sets the background color of the host element to yellow.

{@a apply-directive}

To use the new HighlightDirective , add a paragraph (<p>) element to the template of the root
AppComponent and apply the directive as an attribute.

Apply the attribute directive

Now run the application to see the HighlightDirective in action.

ng serve

To summarize, Angular found the appHighlight attribute on the host <p> element. It created an
instance of the HighlightDirective class and injected a reference to the <p> element into the
directive's constructor which sets the <p> element's background style to yellow.

{@a respond-to-user}

Currently, appHighlight simply sets an element color. The directive could be more dynamic. It could
detect when the user mouses into or out of the element and respond by setting or clearing the highlight color.

Begin by adding HostListener to the list of imported symbols.

Then add two eventhandlers that respond when the mouse enters or leaves, each adorned by the
HostListener decorator.

The @HostListener decorator lets you subscribe to events of the DOM element that hosts an attribute
directive, the <p> in this case.

Of course you could reach into the DOM with standard JavaScript and attach event listeners manually. There
are at least three problems with _that_ approach: 1. You have to write the listeners correctly. 1. The code must
detach the listener when the directive is destroyed to avoid memory leaks. 1. Talking to DOM API directly isn't
a best practice.

The handlers delegate to a helper method that sets the color on the host DOM element, el .

The helper method, highlight , was extracted from the constructor. The revised constructor simply
declares the injected el: ElementRef .

Here's the updated directive in full:

Run the app and confirm that the background color appears when the mouse hovers over the p and
disappears as it moves out.

Respond to user-initiated events

{@a bindings}

Currently the highlight color is hard-coded within the directive. That's inflexible. In this section, you give the
developer the power to set the highlight color while applying the directive.

Begin by adding Input to the list of symbols imported from @angular/core .

Add a highlightColor property to the directive class like this:

{@a input}

Notice the @Input decorator. It adds metadata to the class that makes the directive's highlightColor
property available for binding.

It's called an input property because data flows from the binding expression into the directive. Without that
input metadata, Angular rejects the binding; see below for more about that.

Try it by adding the following directive binding variations to the AppComponent template:

Add a color property to the AppComponent .

Let it control the highlight color with a property binding.

That's good, but it would be nice to simultaneously apply the directive and set the color in the same attribute
like this.

The [appHighlight] attribute binding both applies the highlighting directive to the <p> element and
sets the directive's highlight color with a property binding. You're re-using the directive's attribute selector
([appHighlight]) to do both jobs. That's a crisp, compact syntax.

You'll have to rename the directive's highlightColor property to appHighlight because that's now
the color property binding name.

This is disagreeable. The word, appHighlight , is a terrible property name and it doesn't convey the
property's intent.

{@a input-alias}

Pass values into the directive with an @Input data binding

Binding to an @Input property

Fortunately you can name the directive property whatever you want and alias it for binding purposes.

Restore the original property name and specify the selector as the alias in the argument to @Input .

Inside the directive the property is known as highlightColor . Outside the directive, where you bind to it,
it's known as appHighlight .

You get the best of both worlds: the property name you want and the binding syntax you want:

Now that you're binding via the alias to the highlightColor , modify the onMouseEnter() method to
use that property. If someone neglects to bind to appHighlightColor , highlight the host element in red:

Here's the latest version of the directive class.

It may be difficult to imagine how this directive actually works. In this section, you'll turn AppComponent into
a harness that lets you pick the highlight color with a radio button and bind your color choice to the directive.

Update app.component.html as follows:

Revise the AppComponent.color so that it has no initial value.

Here are the harness and directive in action.

{@a second-property}

This highlight directive has a single customizable property. In a real app, it may need more.

Bind to an @Input alias

Write a harness to try it

Bind to a second property

At the moment, the default color—the color that prevails until the user picks a highlight color—is hard-coded as
"red". Let the template developer set the default color.

Add a second input property to HighlightDirective called defaultColor :

Revise the directive's onMouseEnter so that it first tries to highlight with the highlightColor , then
with the defaultColor , and falls back to "red" if both properties are undefined.

How do you bind to a second property when you're already binding to the appHighlight attribute name?

As with components, you can add as many directive property bindings as you need by stringing them along in
the template. The developer should be able to write the following template HTML to both bind to the
AppComponent.color and fall back to "violet" as the default color.

Angular knows that the defaultColor binding belongs to the HighlightDirective because you
made it public with the @Input decorator.

Here's how the harness should work when you're done coding.

This page covered how to:

Build an attribute directive that modifies the behavior of an element.
Apply the directive to an element in a template.
Respond to events that change the directive's behavior.
Bind values to the directive.

The final source code follows:

You can also experience and download the .

Summary

{@a why-input}

In this demo, the highlightColor property is an input property of the HighlightDirective . You've
seen it applied without an alias:

You've seen it with an alias:

Either way, the @Input decorator tells Angular that this property is public and available for binding by a
parent component. Without @Input , Angular refuses to bind to the property.

You've bound template HTML to component properties before and never used @Input . What's different?

The difference is a matter of trust. Angular treats a component's template as belonging to the component. The
component and its template trust each other implicitly. Therefore, the component's own template may bind to
any property of that component, with or without the @Input decorator.

But a component or directive shouldn't blindly trust other components and directives. The properties of a
component or directive are hidden from binding by default. They are private from an Angular binding
perspective. When adorned with the @Input decorator, the property becomes public from an Angular
binding perspective. Only then can it be bound by some other component or directive.

You can tell if @Input is needed by the position of the property name in a binding.

When it appears in the template expression to the right of the equals (=), it belongs to the template's
component and does not require the @Input decorator.

When it appears in square brackets ([]) to the left of the equals (=), the property belongs to some other
component or directive; that property must be adorned with the @Input decorator.

Now apply that reasoning to the following example:

The color property in the expression on the right belongs to the template's component. The template
and its component trust each other. The color property doesn't require the @Input decorator.

The appHighlight property on the left refers to an aliased property of the HighlightDirective ,
not a property of the template's component. There are trust issues. Therefore, the directive property must
carry the @Input decorator.

Appendix: Why add @Input?

An Angular Module (NgModule) class describes how the application parts fit together. Every application has at
least one Angular Module, the root module that you bootstrap to launch the application. You can call the class
anything you want. The conventional name is AppModule .

The Angular CLI produces a new project with the following minimal AppModule . You evolve this module as
your application grows.

After the import statements, you come to a class adorned with the @NgModule decorator.

The @NgModule decorator identifies AppModule as an NgModule class. @NgModule takes a
metadata object that tells Angular how to compile and launch the application.

The @NgModule properties for the minimal AppModule generated by the CLI are as follows:

declarations — declares the application components. At the moment, there is only the
AppComponent .

imports — the BrowserModule , which this and every application must import in order to run the app
in a browser.

providers — there are none to start but you are likely to add some soon.

bootstrap — the root AppComponent that Angular creates and inserts into the index.html host
web page.

The Angular Modules (NgModules) guide dives deeply into the details of @NgModule . All you need to know
at the moment is a few basics about these four properties.

{@a declarations}

You tell Angular which components belong to the AppModule by listing it in the module's declarations
array. As you create more components, you'll add them to declarations .

You must declare every component in an Angular Module class. If you use a component without declaring it,
you'll see a clear error message in the browser console.

Bootstrapping

The declarations array

You'll learn to create two other kinds of classes — directives and pipes — that you must also add to the
declarations array.

Only _declarables_ — _components_, _directives_ and _pipes_ — belong in the `declarations` array. Do
not put any other kind of class in `declarations`. Do _not_ declare `NgModule` classes. Do _not_ declare
service classes. Do _not_ declare model classes.

{@a imports}

Angular Modules are a way to consolidate features that belong together into discrete units. Many features of
Angular itself are organized as Angular Modules. HTTP services are in the HttpClientModule . The router
is in the RouterModule . Eventually you may create your own modules.

Add a module to the imports array when the application requires its features.

This application, like most applications, executes in a browser. Every application that executes in a browser
needs the BrowserModule from @angular/platform-browser . So every such application includes
the BrowserModule in its root AppModule 's imports array. Other guide pages will tell you when you
need to add additional modules to this array.

Only `@NgModule` classes go in the `imports` array. Do not put any other kind of class in `imports`.
The `import` statements at the top of the file and the NgModule's `imports` array are unrelated and have
completely different jobs. The _JavaScript_ `import` statements give you access to symbols _exported_ by
other files so you can reference them within _this_ file. You add `import` statements to almost every application
file. They have nothing to do with Angular and Angular knows nothing about them. The _module's_ `imports`
array appears _exclusively_ in the `@NgModule` metadata object. It tells Angular about specific _other_
Angular Modules—all of them classes decorated with `@NgModule`—that the application needs to function
properly.

{@a providers}

Angular apps rely on dependency injection (DI) to deliver services to various parts of the application.

Before DI can inject a service, it must create that service with the help of a provider. You can tell DI about a
service's provider in a number of ways. Among the most popular ways is to register the service in the root
ngModule.providers array, which will make that service available everywhere.

For example, a data service provided in the AppModule s providers can be injected into any component

The imports array

The providers array

anywhere in the application.

You don't have any services to provide yet. But you will create some before long and you may chose to provide
many of them here.

{@a bootstrap-array}

You launch the application by bootstrapping the root AppModule . Among other things, the bootstrapping
process creates the component(s) listed in the bootstrap array and inserts each one into the browser
DOM.

Each bootstrapped component is the base of its own tree of components. Inserting a bootstrapped component
usually triggers a cascade of component creations that fill out that tree.

While you can put more than one component tree on a host web page, that's not typical. Most applications
have only one component tree and they bootstrap a single root component.

You can call the one root component anything you want but most developers call it AppComponent .

Which brings us to the bootstrapping process itself.

{@a main}

While there are many ways to bootstrap an application, most applications do so in the src/main.ts that is
generated by the Angular CLI.

This code creates a browser platform for dynamic compilation and bootstraps the AppModule described
above.

The bootstrapping process sets up the execution environment, digs the root AppComponent out of the
module's bootstrap array, creates an instance of the component and inserts it within the element tag
identified by the component's selector .

The AppComponent selector — here and in most documentation samples — is app-root so Angular
looks for a <app-root> tag in the index.html like this one ...

<body> <app-root></app-root> </body>

The bootstrap array

Bootstrap in main.ts

... and displays the AppComponent there.

The main.ts file is very stable. Once you've set it up, you may never change it again.

Your initial app has only a single module, the root module. As your app grows, you'll consider subdividing it into
multiple "feature" modules, some of which can be loaded later ("lazy loaded") if and when the user chooses to
visit those features.

When you're ready to explore these possibilities, visit the Angular Modules guide.

More about Angular Modules

Angular supports most recent browsers. This includes the following specific versions:

Chrome Firefox Edge IE Safari iOS Android IE Mobile

latest latest 14 11 10 10
Nougat (7.0)
Marshmallow (6.0)

11

13 10 9 9
Lollipop
(5.0, 5.1)

9 8 8
KitKat
(4.4)

7 7
Jelly Bean
(4.1, 4.2, 4.3)

Angular's continuous integration process runs unit tests of the framework on all of these browsers for every pull
request, using SauceLabs and Browserstack.

Angular is built on the latest standards of the web platform. Targeting such a wide range of browsers is
challenging because they do not support all features of modern browsers.

You compensate by loading polyfill scripts ("polyfills") for the browsers that you must support. The table below
identifies most of the polyfills you might need.

The suggested polyfills are the ones that run full Angular applications. You may need additional polyfills to
support features not covered by this list. Note that polyfills cannot magically transform an old, slow browser into
a modern, fast one.

Angular CLI users enable polyfills through the src/polyfills.ts file that the CLI created with your
project.

Browser support

Polyfills

Enabling polyfills

This file incorporates the mandatory and many of the optional polyfills as JavaScript import statements.

The npm packages for the mandatory polyfills (such as zone.js) were installed automatically for you when
you created your project and their corresponding import statements are ready to go. You probably won't
touch these.

But if you need an optional polyfill, you'll have to install its npm package with npm or yarn . For example, if
you need the web animations polyfill, you could install it with either of the following commands:

npm install --save web-animations-js yarn add web-animations-js

Then open the polyfills.ts file and un-comment the corresponding import statement as in the
following example:

/** * Required to support Web Animations @angular/platform-browser/animations . * Needed for: All
but Chrome, Firefox and Opera. http://caniuse.com/#feat=web-animation **/ import 'web-animations-js'; // Run
npm install --save web-animations-js .

If you can't find the polyfill you want in polyfills.ts , add it yourself, following the same pattern:

1. install the npm package
2. import the file in polyfills.ts

Non-CLI users should follow the instructions [below](#non-cli).

{@a polyfill-libs}

These are the polyfills required to run an Angular application on each supported browser:

Browsers (Desktop & Mobile) Polyfills Required

Chrome, Firefox, Edge, Safari 9+ [ES7/reflect](guide/browser-support#core-es7-reflect) (JIT only)

Safari 7 & 8, IE10 & 11, Android 4.1+ [ES6](guide/browser-support#core-es6)

IE9 [ES6
classList](guide/browser-support#classlist)

Some features of Angular may require additional polyfills.

Mandatory polyfills

Optional browser features to polyfill

For example, the animations library relies on the standard web animation API, which is only available in
Chrome and Firefox today. You'll need a polyfill to use animations in other browsers.

Here are the features which may require additional polyfills:

Feature Polyfill Browsers (Desktop & Mobile)

[JIT compilation](guide/aot-compiler).
Required to reflect for metadata.

[ES7/reflect]
(guide/browser-
support#core-es7-
reflect)

All current browsers. Enabled by
default. Can remove If you always
use AOT and only use Angular
decorators.

[Animations](guide/animations) [Web Animations]
(guide/browser-
support#web-
animations)

All but Chrome and Firefox
Not supported in IE9

If you use the following deprecated i18n
pipes: [date]
(api/common/DeprecatedDatePipe),
[currency]
(api/common/DeprecatedCurrencyPipe),
[decimal]
(api/common/DeprecatedDecimalPipe)
and [percent]
(api/common/DeprecatedPercentPipe)

[Intl API]
(guide/browser-
support#intl)

All but Chrome, Firefox, Edge, IE11
and Safari 10

[NgClass](api/common/NgClass) on
SVG elements

[classList]
(guide/browser-
support#classlist)

IE10, IE11

[Http](guide/http) when sending and
receiving binary data

[Typed Array]
(guide/browser-
support#typedarray)
[Blob]
(guide/browser-
support#blob)
[FormData]
(guide/browser-
support#formdata)

IE 9

Below are the polyfills which are used to test the framework itself. They are a good starting point for an
application.

Polyfill License Size*

ES7/reflect MIT 0.5KB

ES6 MIT 27.4KB

classList Public domain 1KB

Intl MIT / Unicode license 13.5KB

Web Animations Apache 14.8KB

Typed Array MIT 4KB

Blob MIT 1.3KB

FormData MIT 0.4KB

* Figures are for minified and gzipped code, computed with the closure compiler.

{@a non-cli}

If you aren't using the CLI, you should add your polyfill scripts directly to the host web page (index.html),
perhaps like this.

<!-- pre-zone polyfills --> <script src="nodemodules/core-js/client/shim.min.js"></script> <script
src="nodemodules/web-animations-js/web-animations.min.js"></script>

<!-- zone.js required by Angular --> <script src="node_modules/zone.js/dist/zone.js"></script>

<!-- application polyfills -->

Suggested polyfills

Polyfills for non-CLI users

The Angular documentation is a living document with continuous improvements. This log calls attention to
recent significant changes.

We added a new SystemJS plugin (systemjs-angular-loader.js) to our recommended SystemJS configuration.
This plugin dynamically converts "component-relative" paths in templateUrl and styleUrls to "absolute paths" for
you.

We strongly encourage you to only write component-relative paths. That is the only form of URL discussed in
these docs. You no longer need to write @Component({ moduleId: module.id }), nor should you.

Now you can download the sample code for any guide and run it locally. Look for the new download links next
to the "live example" links.

The Template-Syntax and Structural Directives guides were significantly revised for clarity, accuracy, and
current recommended practices. Discusses <ng-container> . Revised samples are more clear and cover
all topics discussed.

Change Log

Updated to Angular 4.0. Documentation for Angular 2.x can
be found at v2.angular.io.

All mention of moduleId removed. "Component relative
paths" guide deleted (2017-03-13)

NEW: Downloadable examples for each guide (2017-02-28)

Template Syntax/Structural Directives: refreshed (2017-02-
06)

NEW: Samples re-structured with src/ folder (2017-02-02)

All documentation samples have been realigned with the default folder structure of the Angular CLI. That's a
step along the road to basing the sample in the Angular CLI. But it's also good in its own right. It helps clearly
separate app code from setup and configuration files.

All samples now have a src/ folder at the project root. The former app/ folder moves under src/ .
Read about moving your existing project to this structure in the QuickStart repo update instructions.

Notably:

app/main.ts moved to src/main.ts .
app/ moved to src/app/ .
index.html , styles.css and tsconfig.json moved inside src/ .
systemjs.config.js now imports main.js instead of app .

Added lite-server configuration (bs-config.json) to serve src/ .

The new Reactive Forms guide explains how and why to build a "reactive form". "Reactive Forms" are the
code-based counterpart to the declarative "Template Driven" forms approach introduced in the Forms guide.
Check it out before you decide how to add forms to your app. Remember also that you can use both
techniques in the same app, choosing the approach that best fits each scenario.

The new Deployment guide describes techniques for putting your application on a server. It includes important
advice on optimizing for production.

Hierarchical Dependency Injection guide is significantly revised. Closes issue #3086. Revised samples are
clearer and cover all topics discussed.

Setup guide: added (optional) instructions on how to remove non-essential files.
No longer consolidate RxJS operator imports in rxjs-extensions file; each file should import what it
needs.
All samples prepend template/style URLs with ./ as a best practice.

NEW: Reactive Forms guide (2017-01-31)

NEW: Deployment guide (2017-01-30)

Hierarchical Dependency Injection: refreshed (2017-01-13)

Miscellaneous (2017-01-05)

Style Guide: copy edits and revised rules.

Added more information to the Router guide including sections named outlets, wildcard routes, and preload
strategies.

Added section on how to set default request headers (and other request options) to HTTP guide.

Added two plunkers that each test one simple component so you can write a component test plunker of your
own: one for the QuickStart seed's AppComponent and another for the Testing guide's
BannerComponent . Linked to these plunkers in Testing and Setup anatomy guides.

The Internationalization (i18n) guide explains how to handle pluralization and translation of alternative texts
with select . The sample demonstrates these features too.

karma.config + karma-test-shim can handle multiple spec source paths; see quickstart issue:
angular/quickstart#294.
Displays Jasmine Runner output in the karma-launched browser.

The QuickStart is completely rewritten so that it actually is quick. It references a minimal "Hello Angular" app
running in Plunker. The new Setup page tells you how to install a local development environment by
downloading (or cloning) the QuickStart github repository. You are no longer asked to copy-and-paste code into
setup files that were not explained anyway.

Router: more detail (2016-12-21)

HTTP: how to set default request headers (and other
request options) (2016-12-14)

Testing: added component test plunkers (2016-12-02)

Internationalization: pluralization and select (2016-11-30)

Testing: karma file updates (2016-11-30)

QuickStart Rewrite (2016-11-18)

Docs and code samples updated and tested with Angular v.2.2.0.

The updated NgUpgrade Guide guide covers the new AOT friendly upgrade/static module released in
v.2.2.0, which is the recommended facility for migrating from AngularJS to Angular. The documentation for the
version prior to v.2.2.0 has been removed.

The updated TypeScript to JavaScript guide (removed August 2017, PR #18694) explains how to write apps in
ES6/7 by translating the common idioms in the TypeScript documentation examples (and elsewhere on the
web) to ES6/7 and ES5.

Docs and code samples updated and tested with Angular v.2.1.1.

Documentation samples now get TypeScript type information for 3rd party libraries from npm @types
packages rather than with the typings tooling. The typings.json file is gone.

The AngularJS Upgrade guide reflects this change. The package.json installs @types/angular and
several @types/angular-... packages in support of upgrade; these are not needed for pure Angular
development.

Demonstrates how to two-way data bind to a custom Angular component and re-explains [(ngModel)] in
terms of the basic [()] syntax.

Sync with Angular v.2.2.0 (2016-11-14)

UPDATE: NgUpgrade Guide for the AOT friendly
upgrade/static module (2016-11-14)

ES6 described in "TypeScript to JavaScript" (2016-11-14)

Sync with Angular v.2.1.1 (2016-10-21)

npm @types packages replace typings (2016-10-20)

"Template Syntax" explains two-way data binding syntax
(2016-10-20)

This change supports ES6 developers and aligns better with typical Angular libraries. It does not affect the
module's API but it does affect how you load and import it. See the change note in the
in-memory-web-api repo.

The router can lazily preload modules after the app starts and before the user navigates to them for improved
perceived performance.

New :enter and :leave aliases make animation more natural.

Docs and code samples updated and tested with Angular v.2.1.0.

The NEW Ahead of time (AOT) Compilation guide explains what AOT compilation is and why you'd want it. It
demonstrates the basics with a QuickStart app followed by the more advanced considerations of compiling and
bundling the Tour of Heroes.

Docs and code samples updated and tested with Angular v.2.0.2.

The Routing and Navigation guide now locates route configuration in a Routing Module. The Routing Module
replaces the previous routing object involving the ModuleWithProviders .

BREAKING CHANGE: in-memory-web-api (v.0.1.11)
delivered as esm umd (2016-10-19)

"Router" preload syntax and :enter/:leave animations (2016-
10-19)

Sync with Angular v.2.1.0 (2016-10-12)

NEW "Ahead of time (AOT) Compilation" guide (2016-10-11)

Sync with Angular v.2.0.2 (2016-10-6)

"Routing and Navigation" guide with the Router Module
(2016-10-5)

All guided samples with routing use the Routing Module and prose content has been updated, most
conspicuously in the NgModule guide and NgModule FAQ guide.

Added a new Internationalization (i18n) guide that shows how to use Angular "i18n" facilities to translate
template text into multiple languages.

Many samples use the angular-in-memory-web-api to simulate a remote server. This library is also
useful to you during early development before you have a server to talk to.

The package name was changed from "angular2-in-memory-web-api" which is still frozen-in-time on npm. The
new "angular-in-memory-web-api" has new features. Read about them on github.

StyleGuide explains recommended conventions for NgModules. Barrels now are far less useful and have been
removed from the style guide; they remain valuable but are not a matter of Angular style. Also relaxed the rule
that discouraged use of the @Component.host property.

Sample components that get their templates or styles with templateUrl or styleUrls have been
converted to module-relative URLs. Added the moduleId: module.id property-and-value to their
@Component metadata.

This change is a requirement for compilation with AOT compiler when the app loads modules with SystemJS
as the samples currently do.

The Lifecycle Hooks guide is shorter, simpler, and draws more attention to the order in which Angular calls the
hooks.

New "Internationalization" guide (2016-09-30)

"angular-in-memory-web-api" package rename (2016-09-27)

"Style Guide" with NgModules (2016-09-27)

moduleId: module.id everywhere (2016-09-25)

"Lifecycle Hooks" guide simplified (2016-09-24)

Bootstrapping import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

platformBrowserDynamic().bootstrapModule(AppModule); Bootstraps the app, using the root component from the specified NgModule .

NgModules import { NgModule } from '@angular/core';

@NgModule({ declarations: ..., imports: ...,

exports: ..., providers: ..., bootstrap: ...})

class MyModule {}

Defines a module that contains components, directives, pipes, and providers.

declarations: [MyRedComponent, MyBlueComponent, MyDatePipe] List of components, directives, and pipes that belong to this module.

imports: [BrowserModule, SomeOtherModule]
List of modules to import into this module. Everything from the imported modules is
available to declarations of this module.

exports: [MyRedComponent, MyDatePipe] List of components, directives, and pipes visible to modules that import this module.

providers: [MyService, { provide: ... }]
List of dependency injection providers visible both to the contents of this module and to
importers of this module.

bootstrap: [MyAppComponent] List of components to bootstrap when this module is bootstrapped.

Template syntax

<input [value]="firstName"> Binds property value to the result of expression firstName .

<div [attr.role]="myAriaRole"> Binds attribute role to the result of expression myAriaRole .

<div [class.extra-sparkle]="isDelightful">
Binds the presence of the CSS class extra-sparkle on the element to the truthiness of
the expression isDelightful .

<div [style.width.px]="mySize">
Binds style property width to the result of expression mySize in pixels. Units are
optional.

<button (click)="readRainbow($event)">
Calls method readRainbow when a click event is triggered on this button element (or its
children) and passes in the event object.

<div title="Hello {{ponyName}}">
Binds a property to an interpolated string, for example, "Hello Seabiscuit". Equivalent to:
<div [title]="'Hello ' + ponyName">

<p>Hello {{ponyName}}</p> Binds text content to an interpolated string, for example, "Hello Seabiscuit".

<my-cmp [(title)]="name">
Sets up two-way data binding. Equivalent to:
<my-cmp [title]="name" (titleChange)="name=$event">

<video #movieplayer ...>

<button (click)="movieplayer.play()">

</video>

Creates a local variable movieplayer that provides access to the video element
instance in data-binding and event-binding expressions in the current template.

<p *myUnless="myExpression">...</p>
The * symbol turns the current element into an embedded template. Equivalent to:
<ng-template [myUnless]="myExpression"><p>...</p></ng-template>

<p>Card No.: {{cardNumber | myCardNumberFormatter}}</p>
Transforms the current value of expression cardNumber via the pipe called
myCardNumberFormatter .

<p>Employer: {{employer?.companyName}}</p>
The safe navigation operator (?) means that the employer field is optional and if
undefined , the rest of the expression should be ignored.

<svg:rect x="0" y="0" width="100" height="100"/>
An SVG snippet template needs an svg: prefix on its root element to disambiguate the
SVG element from an HTML component.

<svg>

<rect x="0" y="0" width="100" height="100"/>

</svg>

An <svg> root element is detected as an SVG element automatically, without the prefix.

Cheat Sheet

Built-in directives import { CommonModule } from '@angular/common';

<section *ngIf="showSection">
Removes or recreates a portion of the DOM tree based on the showSection

expression.

<li *ngFor="let item of list">
Turns the li element and its contents into a template, and uses that to instantiate a
view for each item in list.

<div [ngSwitch]="conditionExpression">

<ng-template [ngSwitchCase]="case1Exp">...</ng-template>

<ng-template ngSwitchCase="case2LiteralString">...</ng-template>

<ng-template ngSwitchDefault>...</ng-template>

</div>

Conditionally swaps the contents of the div by selecting one of the embedded
templates based on the current value of conditionExpression .

<div [ngClass]="{'active': isActive, 'disabled': isDisabled}">

Binds the presence of CSS classes on the element to the truthiness of the
associated map values. The right-hand expression should return {class-name:
true/false} map.

Forms import { FormsModule } from '@angular/forms';

<input [(ngModel)]="userName"> Provides two-way data-binding, parsing, and validation for form controls.

Class decorators import { Directive, ... } from '@angular/core';

@Component({...})

class MyComponent() {}
Declares that a class is a component and provides metadata about the component.

@Directive({...})

class MyDirective() {}
Declares that a class is a directive and provides metadata about the directive.

@Pipe({...})

class MyPipe() {}
Declares that a class is a pipe and provides metadata about the pipe.

@Injectable()

class MyService() {}

Declares that a class has dependencies that should be injected into the constructor when the dependency injector is creating an instance of
this class.

Directive configuration @Directive({ property1: value1, ... })

selector: '.cool-button:not(a)'

Specifies a CSS selector that identifies this directive within a template. Supported selectors include element ,
[attribute] , .class , and :not() .

Does not support parent-child relationship selectors.

providers: [MyService, { provide: ... }] List of dependency injection providers for this directive and its children.

Component configuration
@Component extends @Directive , so the @Directive configuration applies to components

as well

moduleId: module.id If set, the templateUrl and styleUrl are resolved relative to the component.

viewProviders: [MyService, { provide: ... }] List of dependency injection providers scoped to this component's view.

template: 'Hello {{name}}'

templateUrl: 'my-component.html'
Inline template or external template URL of the component's view.

styles: ['.primary {color: red}']

styleUrls: ['my-component.css']
List of inline CSS styles or external stylesheet URLs for styling the component’s view.

Class field decorators for directives and components import { Input, ... } from '@angular/core';

@Input() myProperty;
Declares an input property that you can update via property binding (example:
<my-cmp [myProperty]="someExpression">).

@Output() myEvent = new EventEmitter();
Declares an output property that fires events that you can subscribe to with an event binding
(example: <my-cmp (myEvent)="doSomething()">).

@HostBinding('class.valid') isValid;
Binds a host element property (here, the CSS class valid) to a directive/component property
(isValid).

@HostListener('click', ['$event']) onClick(e) {...}
Subscribes to a host element event (click) with a directive/component method (onClick),
optionally passing an argument ($event).

@ContentChild(myPredicate) myChildComponent;
Binds the first result of the component content query (myPredicate) to a property
(myChildComponent) of the class.

@ContentChildren(myPredicate) myChildComponents;
Binds the results of the component content query (myPredicate) to a property
(myChildComponents) of the class.

@ViewChild(myPredicate) myChildComponent;
Binds the first result of the component view query (myPredicate) to a property
(myChildComponent) of the class. Not available for directives.

@ViewChildren(myPredicate) myChildComponents;
Binds the results of the component view query (myPredicate) to a property
(myChildComponents) of the class. Not available for directives.

Directive and component change detection and lifecycle
hooks

(implemented as class methods)

constructor(myService: MyService, ...) { ... } Called before any other lifecycle hook. Use it to inject dependencies, but avoid any serious work here.

ngOnChanges(changeRecord) { ... } Called after every change to input properties and before processing content or child views.

ngOnInit() { ... } Called after the constructor, initializing input properties, and the first call to ngOnChanges .

ngDoCheck() { ... }
Called every time that the input properties of a component or a directive are checked. Use it to extend
change detection by performing a custom check.

ngAfterContentInit() { ... } Called after ngOnInit when the component's or directive's content has been initialized.

ngAfterContentChecked() { ... } Called after every check of the component's or directive's content.

ngAfterViewInit() { ... }
Called after ngAfterContentInit when the component's view has been initialized. Applies to
components only.

ngAfterViewChecked() { ... } Called after every check of the component's view. Applies to components only.

ngOnDestroy() { ... } Called once, before the instance is destroyed.

Dependency injection configuration

{ provide: MyService, useClass: MyMockService } Sets or overrides the provider for MyService to the MyMockService class.

{ provide: MyService, useFactory: myFactory } Sets or overrides the provider for MyService to the myFactory factory function.

{ provide: MyValue, useValue: 41 } Sets or overrides the provider for MyValue to the value 41 .

Routing and navigation import { Routes, RouterModule, ... } from '@angular/router';

const routes: Routes = [

{ path: '', component: HomeComponent },

{ path: 'path/:routeParam', component: MyComponent },

{ path: 'staticPath', component: ... },

{ path: '**', component: ... },

{ path: 'oldPath', redirectTo: '/staticPath' },

{ path: ..., component: ..., data: { message: 'Custom' } }

]);

Configures routes for the application. Supports static, parameterized, redirect, and wildcard
routes. Also supports custom route data and resolve.

const routing = RouterModule.forRoot(routes);

<router-outlet></router-outlet>

<router-outlet name="aux"></router-outlet>

Marks the location to load the component of the active route.

<a [routerLink]="['/path', routeParam]">

<a [routerLink]="['/path', { matrixParam: 'value' }]">

<a [routerLink]="['/path']" [queryParams]="{ page: 1 }">

<a [routerLink]="['/path']" fragment="anchor">

Creates a link to a different view based on a route instruction consisting of a route path,
required and optional parameters, query parameters, and a fragment. To navigate to a root
route, use the / prefix; for a child route, use the ./ prefix; for a sibling or parent, use
the ../ prefix.

<a [routerLink]="['/path']" routerLinkActive="active">
The provided classes are added to the element when the routerLink becomes the
current active route.

class CanActivateGuard implements CanActivate {

canActivate(

route: ActivatedRouteSnapshot,

state: RouterStateSnapshot

): Observable<boolean>|Promise<boolean>|boolean { ... }

}

{ path: ..., canActivate: [CanActivateGuard] }

An interface for defining a class that the router should call first to determine if it should
activate this component. Should return a boolean or an Observable/Promise that resolves to
a boolean.

class CanDeactivateGuard implements CanDeactivate<T> {

canDeactivate(

component: T,

route: ActivatedRouteSnapshot,

state: RouterStateSnapshot

): Observable<boolean>|Promise<boolean>|boolean { ... }

}

{ path: ..., canDeactivate: [CanDeactivateGuard] }

An interface for defining a class that the router should call first to determine if it should
deactivate this component after a navigation. Should return a boolean or an
Observable/Promise that resolves to a boolean.

class CanActivateChildGuard implements CanActivateChild {

canActivateChild(

route: ActivatedRouteSnapshot,

state: RouterStateSnapshot

): Observable<boolean>|Promise<boolean>|boolean { ... }

}

{ path: ..., canActivateChild: [CanActivateGuard],

children: ... }

An interface for defining a class that the router should call first to determine if it should
activate the child route. Should return a boolean or an Observable/Promise that resolves to
a boolean.

class ResolveGuard implements Resolve<T> {

resolve(

route: ActivatedRouteSnapshot,

state: RouterStateSnapshot

): Observable<any>|Promise<any>|any { ... }

}

{ path: ..., resolve: [ResolveGuard] }

An interface for defining a class that the router should call first to resolve route data before
rendering the route. Should return a value or an Observable/Promise that resolves to a
value.

class CanLoadGuard implements CanLoad {

canLoad(

route: Route

): Observable<boolean>|Promise<boolean>|boolean { ... }

}

{ path: ..., canLoad: [CanLoadGuard], loadChildren: ... }

An interface for defining a class that the router should call first to check if the lazy loaded
module should be loaded. Should return a boolean or an Observable/Promise that resolves
to a boolean.

{@a top}

This cookbook contains recipes for common component communication scenarios in which two or more
components share information. {@a toc}

See the .

{@a parent-to-child}

HeroChildComponent has two input properties, typically adorned with @Input decorations.

The second @Input aliases the child component property name masterName as 'master' .

The HeroParentComponent nests the child HeroChildComponent inside an *ngFor repeater,
binding its master string property to the child's master alias, and each iteration's hero instance to the
child's hero property.

The running application displays three heroes:

Component Interaction

Pass data from parent to child with input binding

Test it

E2E test that all children were instantiated and displayed as expected:

Back to top

{@a parent-to-child-setter}

Use an input property setter to intercept and act upon a value from the parent.

The setter of the name input property in the child NameChildComponent trims the whitespace from a
name and replaces an empty value with default text.

Here's the NameParentComponent demonstrating name variations including a name with all spaces:

E2E tests of input property setter with empty and non-empty names:

Back to top

{@a parent-to-child-on-changes}

Detect and act upon changes to input property values with the ngOnChanges() method of the
OnChanges lifecycle hook interface.

You may prefer this approach to the property setter when watching multiple, interacting input properties. Learn
about `ngOnChanges()` in the [LifeCycle Hooks](guide/lifecycle-hooks) chapter.

Intercept input property changes with a setter

Test it

Intercept input property changes with ngOnChanges()

This VersionChildComponent detects changes to the major and minor input properties and
composes a log message reporting these changes:

The VersionParentComponent supplies the minor and major values and binds buttons to
methods that change them.

Here's the output of a button-pushing sequence:

Test that both input properties are set initially and that button clicks trigger the expected ngOnChanges calls
and values:

Back to top

{@a child-to-parent}

The child component exposes an EventEmitter property with which it emits events when something
happens. The parent binds to that event property and reacts to those events.

The child's EventEmitter property is an output property, typically adorned with an @Output decoration
as seen in this VoterComponent :

Clicking a button triggers emission of a true or false , the boolean payload.

The parent VoteTakerComponent binds an event handler called onVoted() that responds to the child

Test it

Parent listens for child event

event payload $event and updates a counter.

The framework passes the event argument—represented by $event —to the handler method, and the
method processes it:

Test that clicking the Agree and Disagree buttons update the appropriate counters:

Back to top

A parent component cannot use data binding to read child properties or invoke child methods. You can do both
by creating a template reference variable for the child element and then reference that variable within the
parent template as seen in the following example.

{@a countdown-timer-example} The following is a child CountdownTimerComponent that repeatedly
counts down to zero and launches a rocket. It has start and stop methods that control the clock and it
displays a countdown status message in its own template.

The CountdownLocalVarParentComponent that hosts the timer component is as follows:

The parent component cannot data bind to the child's start and stop methods nor to its seconds

Test it

Parent interacts with child via local variable

property.

You can place a local variable, #timer , on the tag <countdown-timer> representing the child
component. That gives you a reference to the child component and the ability to access any of its properties or
methods from within the parent template.

This example wires parent buttons to the child's start and stop and uses interpolation to display the
child's seconds property.

Here we see the parent and child working together.

{@a countdown-tests}

Test that the seconds displayed in the parent template match the seconds displayed in the child's status
message. Test also that clicking the Stop button pauses the countdown timer:

Back to top

{@a parent-to-view-child}

The local variable approach is simple and easy. But it is limited because the parent-child wiring must be done
entirely within the parent template. The parent component itself has no access to the child.

You can't use the local variable technique if an instance of the parent component class must read or write child
component values or must call child component methods.

When the parent component class requires that kind of access, inject the child component into the parent as a
ViewChild.

Test it

Parent calls an @ViewChild()

The following example illustrates this technique with the same Countdown Timer example. Neither its
appearance nor its behavior will change. The child CountdownTimerComponent is the same as well.

The switch from the *local variable* to the *ViewChild* technique is solely for the purpose of demonstration.

Here is the parent, CountdownViewChildParentComponent :

It takes a bit more work to get the child view into the parent component class.

First, you have to import references to the ViewChild decorator and the AfterViewInit lifecycle
hook.

Next, inject the child CountdownTimerComponent into the private timerComponent property via the
@ViewChild property decoration.

The #timer local variable is gone from the component metadata. Instead, bind the buttons to the parent
component's own start and stop methods and present the ticking seconds in an interpolation around
the parent component's seconds method.

These methods access the injected timer component directly.

The ngAfterViewInit() lifecycle hook is an important wrinkle. The timer component isn't available until
after Angular displays the parent view. So it displays 0 seconds initially.

Then Angular calls the ngAfterViewInit lifecycle hook at which time it is too late to update the parent
view's display of the countdown seconds. Angular's unidirectional data flow rule prevents updating the parent
view's in the same cycle. The app has to wait one turn before it can display the seconds.

Use setTimeout() to wait one tick and then revise the seconds() method so that it takes future
values from the timer component.

Use the same countdown timer tests as before.

Back to top

{@a bidirectional-service}

A parent component and its children share a service whose interface enables bi-directional communication

Test it

Parent and children communicate via a service

within the family.

The scope of the service instance is the parent component and its children. Components outside this
component subtree have no access to the service or their communications.

This MissionService connects the MissionControlComponent to multiple
AstronautComponent children.

The MissionControlComponent both provides the instance of the service that it shares with its children
(through the providers metadata array) and injects that instance into itself through its constructor:

The AstronautComponent also injects the service in its constructor. Each AstronautComponent is a
child of the MissionControlComponent and therefore receives its parent's service instance:

Notice that this example captures the `subscription` and `unsubscribe()` when the `AstronautComponent` is
destroyed. This is a memory-leak guard step. There is no actual risk in this app because the lifetime of a
`AstronautComponent` is the same as the lifetime of the app itself. That *would not* always be true in a more
complex application. You don't add this guard to the `MissionControlComponent` because, as the parent, it
controls the lifetime of the `MissionService`.

The History log demonstrates that messages travel in both directions between the parent
MissionControlComponent and the AstronautComponent children, facilitated by the service:

Test it

Tests click buttons of both the parent MissionControlComponent and the AstronautComponent

children and verify that the history meets expectations:

Back to top

Angular applications are styled with standard CSS. That means you can apply everything you know about CSS
stylesheets, selectors, rules, and media queries directly to Angular applications.

Additionally, Angular can bundle component styles with components, enabling a more modular design than
regular stylesheets.

This page describes how to load and apply these component styles.

You can run the in Plunker and download the code from there.

For every Angular component you write, you may define not only an HTML template, but also the CSS styles
that go with that template, specifying any selectors, rules, and media queries that you need.

One way to do this is to set the styles property in the component metadata. The styles property takes
an array of strings that contain CSS code. Usually you give it one string, as in the following example:

The styles specified in `@Component` metadata _apply only within the template of that component_.

They are not inherited by any components nested within the template nor by any content projected into the
component.

In this example, the h1 style applies only to the HeroAppComponent , not to the nested
HeroMainComponent nor to <h1> tags anywhere else in the application.

This scoping restriction is a styling modularity feature.

You can use the CSS class names and selectors that make the most sense in the context of each
component.

Class names and selectors are local to the component and don't collide with classes and selectors used
elsewhere in the application.

Changes to styles elsewhere in the application don't affect the component's styles.

Component Styles

Using component styles

Style scope

You can co-locate the CSS code of each component with the TypeScript and HTML code of the
component, which leads to a neat and tidy project structure.

You can change or remove component CSS code without searching through the whole application to find
where else the code is used.

{@a special-selectors}

Component styles have a few special selectors from the world of shadow DOM style scoping (described in the
CSS Scoping Module Level 1 page on the W3C site). The following sections describe these selectors.

Use the :host pseudo-class selector to target styles in the element that hosts the component (as opposed
to targeting elements inside the component's template).

The :host selector is the only way to target the host element. You can't reach the host element from inside
the component with other selectors because it's not part of the component's own template. The host element is
in a parent component's template.

Use the function form to apply host styles conditionally by including another selector inside parentheses after
:host .

The next example targets the host element again, but only when it also has the active CSS class.

Sometimes it's useful to apply styles based on some condition outside of a component's view. For example, a
CSS theme class could be applied to the document <body> element, and you want to change how your
component looks based on that.

Use the :host-context() pseudo-class selector, which works just like the function form of :host() .
The :host-context() selector looks for a CSS class in any ancestor of the component host element, up
to the document root. The :host-context() selector is useful when combined with another selector.

The following example applies a background-color style to all <h2> elements inside the component,
only if some ancestor element has the CSS class theme-light .

Special selectors

:host

:host-context

(deprecated) /deep/ , >>> , and ::ng-deep

Component styles normally apply only to the HTML in the component's own template.

Use the /deep/ shadow-piercing descendant combinator to force a style down through the child component
tree into all the child component views. The /deep/ combinator works to any depth of nested components,
and it applies to both the view children and content children of the component.

The following example targets all <h3> elements, from the host element down through this component to all
of its child elements in the DOM.

The /deep/ combinator also has the aliases >>> , and ::ng-deep .

Use `/deep/`, `>>>` and `::ng-deep` only with *emulated* view encapsulation. Emulated is the default and most
commonly used view encapsulation. For more information, see the [Controlling view encapsulation]
(guide/component-styles#view-encapsulation) section.
The shadow-piercing descendant combinator is deprecated and [support is being removed from major
browsers](https://www.chromestatus.com/features/6750456638341120) and tools. As such we plan to drop
support in Angular (for all 3 of `/deep/`, `>>>` and `::ng-deep`). Until then `::ng-deep` should be preferred for a
broader compatibility with the tools.

{@a loading-styles}

There are several ways to add styles to a component:

By setting styles or styleUrls metadata.
Inline in the template HTML.
With CSS imports.

The scoping rules outlined earlier apply to each of these loading patterns.

You can add a styles array property to the @Component decorator.

Each string in the array defines some CSS for this component.

Reminder: these styles apply _only to this component_. They are _not inherited_ by any components nested
within the template nor by any content projected into the component.

The CLI defines an empty styles array when you create the component with the --inline-styles
flag.

Loading component styles

Styles in component metadata

ng generate component hero-app --inline-style

You can load styles from external CSS files by adding a styleUrls property to a component's
@Component decorator:

Reminder: the styles in the style file apply _only to this component_. They are _not inherited_ by any
components nested within the template nor by any content projected into the component.
You can specify more than one styles file or even a combination of `style` and `styleUrls`.

The CLI creates an empty styles file for you by default and references that file in the component's generated
styleUrls .

ng generate component hero-app

You can embed CSS styles directly into the HTML template by putting them inside <style> tags.

You can also write <link> tags into the component's HTML template.

The link tag's `href` URL must be relative to the _**application root**_, not relative to the component file. When
building with the CLI, be sure to include the linked style file among the assets to be copied to the server as
described in the [CLI documentation](https://github.com/angular/angular-cli/wiki/stories-asset-configuration).

You can also import CSS files into the CSS files using the standard CSS @import rule. For details, see
@import on the MDN site.

In this case, the URL is relative to the CSS file into which you're importing.

When building with the CLI, you must configure the .angular-cli.json to include all external assets,
including external style files.

Register global style files in the styles section which, by default, is pre-configured with the global

Style files in component metadata

Template inline styles

Template link tags

CSS @imports

External and global style files

styles.css file.

See the CLI documentation to learn more.

If you're building with the CLI, you can write style files in sass, less, or stylus and specify those files in the
@Component.styleUrls metadata with the appropriate extensions (.scss , .less , .styl) as in

the following example:

@Component({ selector: 'app-root', templateUrl: './app.component.html', styleUrls: ['./app.component.scss'] }) ...

The CLI build process runs the pertinent CSS preprocessor.

When generating a component file with ng generate component , the CLI emits an empty CSS styles file
(.css) by default. You can configure the CLI to default to your preferred CSS preprocessor as explained in
the CLI documentation.

Style strings added to the `@Component.styles` array _must be written in CSS_ because the CLI cannot apply
a preprocessor to inline styles.

{@a view-encapsulation}

As discussed earlier, component CSS styles are encapsulated into the component's view and don't affect the
rest of the application.

To control how this encapsulation happens on a per component basis, you can set the view encapsulation
mode in the component metadata. Choose from the following modes:

Native view encapsulation uses the browser's native shadow DOM implementation (see Shadow
DOM on the MDN site) to attach a shadow DOM to the component's host element, and then puts the
component view inside that shadow DOM. The component's styles are included within the shadow DOM.

Emulated view encapsulation (the default) emulates the behavior of shadow DOM by preprocessing
(and renaming) the CSS code to effectively scope the CSS to the component's view. For details, see
Appendix 1.

None means that Angular does no view encapsulation. Angular adds the CSS to the global styles. The
scoping rules, isolations, and protections discussed earlier don't apply. This is essentially the same as
pasting the component's styles into the HTML.

Non-CSS style files

View encapsulation

To set the components encapsulation mode, use the encapsulation property in the component metadata:

Native view encapsulation only works on browsers that have native support for shadow DOM (see Shadow
DOM v0 on the Can I use site). The support is still limited, which is why Emulated view encapsulation is the
default mode and recommended in most cases.

{@a inspect-generated-css}

When using emulated view encapsulation, Angular preprocesses all component styles so that they
approximate the standard shadow CSS scoping rules.

In the DOM of a running Angular application with emulated view encapsulation enabled, each DOM element
has some extra attributes attached to it:

<hero-details _nghost-pmm-5> <h2 _ngcontent-pmm-5>Mister Fantastic</h2> <hero-team _ngcontent-pmm-5
_nghost-pmm-6> <h3 _ngcontent-pmm-6>Team</h3> </hero-team> </hero-detail>

There are two kinds of generated attributes:

An element that would be a shadow DOM host in native encapsulation has a generated _nghost
attribute. This is typically the case for component host elements.
An element within a component's view has a _ngcontent attribute that identifies to which host's
emulated shadow DOM this element belongs.

The exact values of these attributes aren't important. They are automatically generated and you never refer to
them in application code. But they are targeted by the generated component styles, which are in the <head>
section of the DOM:

[_nghost-pmm-5] { display: block; border: 1px solid black; }

h3[_ngcontent-pmm-6] { background-color: white; border: 1px solid #777; }

These styles are post-processed so that each selector is augmented with _nghost or _ngcontent
attribute selectors. These extra selectors enable the scoping rules described in this page.

Inspecting generated CSS

Dependency Injection is a powerful pattern for managing code dependencies. This cookbook explores many of
the features of Dependency Injection (DI) in Angular. {@a toc}

See the of the code in this cookbook.

{@a app-wide-dependencies}

Register providers for dependencies used throughout the application in the root application component,
AppComponent .

The following example shows importing and registering the LoggerService , UserContext , and the
UserService in the @Component metadata providers array.

All of these services are implemented as classes. Service classes can act as their own providers which is why
listing them in the providers array is all the registration you need.

A *provider* is something that can create or deliver a service. Angular creates a service instance from a class
provider by using `new`. Read more about providers in the [Dependency Injection](guide/dependency-
injection#register-providers-ngmodule) guide.

Now that you've registered these services, Angular can inject them into the constructor of any component or
service, anywhere in the application.

{@a external-module-configuration}

Generally, register providers in the NgModule rather than in the root application component.

Do this when you expect the service to be injectable everywhere, or you are configuring another application
global service before the application starts.

Here is an example of the second case, where the component router configuration includes a non-default
location strategy by listing its provider in the providers list of the AppModule .

Dependency Injection

Application-wide dependencies

External module configuration

{@a injectable}

{@a nested-dependencies}

The consumer of an injected service does not know how to create that service. It shouldn't care. It's the
dependency injection's job to create and cache that service.

Sometimes a service depends on other services, which may depend on yet other services. Resolving these
nested dependencies in the correct order is also the framework's job. At each step, the consumer of
dependencies simply declares what it requires in its constructor and the framework takes over.

The following example shows injecting both the LoggerService and the UserContext in the
AppComponent .

The UserContext in turn has its own dependencies on both the LoggerService and a
UserService that gathers information about a particular user.

When Angular creates the AppComponent , the dependency injection framework creates an instance of the
LoggerService and starts to create the UserContextService . The UserContextService needs

the LoggerService , which the framework already has, and the UserService , which it has yet to
create. The UserService has no dependencies so the dependency injection framework can just use
new to instantiate one.

The beauty of dependency injection is that AppComponent doesn't care about any of this. You simply
declare what is needed in the constructor (LoggerService and UserContextService) and the
framework does the rest.

Once all the dependencies are in place, the AppComponent displays the user information:

{@a injectable-1}

Notice the @Injectable() decorator on the UserContextService class.

@Injectable() and nested service dependencies

@Injectable()

That decorator makes it possible for Angular to identify the types of its two dependencies, LoggerService

and UserService .

Technically, the @Injectable() decorator is only required for a service class that has its own
dependencies. The LoggerService doesn't depend on anything. The logger would work if you omitted
@Injectable() and the generated code would be slightly smaller.

But the service would break the moment you gave it a dependency and you'd have to go back and add
@Injectable() to fix it. Add @Injectable() from the start for the sake of consistency and to avoid

future pain.

Although this site recommends applying `@Injectable()` to all service classes, don't feel bound by it. Some
developers prefer to add it only where needed and that's a reasonable policy too.
The `AppComponent` class had two dependencies as well but no `@Injectable()`. It didn't need `@Injectable()`
because that component class has the `@Component` decorator. In Angular with TypeScript, a *single*
decorator—*any* decorator—is sufficient to identify dependency types.

{@a service-scope}

All injected service dependencies are singletons meaning that, for a given dependency injector, there is only
one instance of service.

But an Angular application has multiple dependency injectors, arranged in a tree hierarchy that parallels the
component tree. So a particular service can be provided and created at any component level and multiple
times if provided in multiple components.

By default, a service dependency provided in one component is visible to all of its child components and
Angular injects the same service instance into all child components that ask for that service.

Accordingly, dependencies provided in the root AppComponent can be injected into any component
anywhere in the application.

That isn't always desirable. Sometimes you want to restrict service availability to a particular region of the
application.

You can limit the scope of an injected service to a branch of the application hierarchy by providing that service
at the sub-root component for that branch. This example shows how similar providing a service to a sub-root
component is to providing a service in the root AppComponent . The syntax is the same. Here, the
HeroService is available to the HeroesBaseComponent because it is in the providers array:

Limit service scope to a component subtree

When Angular creates the HeroesBaseComponent , it also creates a new instance of HeroService that
is visible only to the component and its children, if any.

You could also provide the HeroService to a different component elsewhere in the application. That would
result in a different instance of the service, living in a different injector.

Examples of such scoped `HeroService` singletons appear throughout the accompanying sample code,
including the `HeroBiosComponent`, `HeroOfTheMonthComponent`, and `HeroesBaseComponent`. Each of
these components has its own `HeroService` instance managing its own independent collection of heroes.
Take a break! This much Dependency Injection knowledge may be all that many Angular developers ever
need to build their applications. It doesn't always have to be more complicated.

{@a multiple-service-instances}

Sometimes you want multiple instances of a service at the same level of the component hierarchy.

A good example is a service that holds state for its companion component instance. You need a separate
instance of the service for each component. Each service has its own work-state, isolated from the service-
and-state of a different component. This is called sandboxing because each service and component instance
has its own sandbox to play in.

{@a hero-bios-component} Imagine a HeroBiosComponent that presents three instances of the
HeroBioComponent .

Each HeroBioComponent can edit a single hero's biography. A HeroBioComponent relies on a
HeroCacheService to fetch, cache, and perform other persistence operations on that hero.

Clearly the three instances of the HeroBioComponent can't share the same HeroCacheService .
They'd be competing with each other to determine which hero to cache.

Each HeroBioComponent gets its own HeroCacheService instance by listing the
HeroCacheService in its metadata providers array.

The parent HeroBiosComponent binds a value to the heroId . The ngOnInit passes that id to
the service, which fetches and caches the hero. The getter for the hero property pulls the cached hero from
the service. And the template displays this data-bound property.

Find this example in live code and confirm that the three HeroBioComponent instances have their own
cached hero data.

Multiple service instances (sandboxing)

{@a optional}

{@a qualify-dependency-lookup}

As you now know, dependencies can be registered at any level in the component hierarchy.

When a component requests a dependency, Angular starts with that component's injector and walks up the
injector tree until it finds the first suitable provider. Angular throws an error if it can't find the dependency during
that walk.

You want this behavior most of the time. But sometimes you need to limit the search and/or accommodate a
missing dependency. You can modify Angular's search behavior with the @Host and @Optional

qualifying decorators, used individually or together.

The @Optional decorator tells Angular to continue when it can't find the dependency. Angular sets the
injection parameter to null instead.

The @Host decorator stops the upward search at the host component.

The host component is typically the component requesting the dependency. But when this component is
projected into a parent component, that parent component becomes the host. The next example covers this
second case.

Qualify dependency lookup with @Optional() and @Host()

{@a demonstration}

The HeroBiosAndContactsComponent is a revision of the HeroBiosComponent that you looked at
above.

Focus on the template:

Now there is a new <hero-contact> element between the <hero-bio> tags. Angular projects, or
transcludes, the corresponding HeroContactComponent into the HeroBioComponent view, placing it
in the <ng-content> slot of the HeroBioComponent template:

It looks like this, with the hero's telephone number from HeroContactComponent projected above the hero
description:

Here's the HeroContactComponent which demonstrates the qualifying decorators:

Focus on the constructor parameters:

The @Host() function decorating the heroCache property ensures that you get a reference to the cache
service from the parent HeroBioComponent . Angular throws an error if the parent lacks that service, even
if a component higher in the component tree happens to have it.

A second @Host() function decorates the loggerService property. The only LoggerService

instance in the app is provided at the AppComponent level. The host HeroBioComponent doesn't have
its own LoggerService provider.

Angular would throw an error if you hadn't also decorated the property with the @Optional() function.
Thanks to @Optional() , Angular sets the loggerService to null and the rest of the component
adapts.

Here's the HeroBiosAndContactsComponent in action.

Demonstration

If you comment out the @Host() decorator, Angular now walks up the injector ancestor tree until it finds the
logger at the AppComponent level. The logger logic kicks in and the hero display updates with the
gratuitous "!!!", indicating that the logger was found.

On the other hand, if you restore the @Host() decorator and comment out @Optional , the application
fails for lack of the required logger at the host component level.
EXCEPTION: No provider for LoggerService! (HeroContactComponent -> LoggerService)

{@a component-element}

On occasion you might need to access a component's corresponding DOM element. Although developers
strive to avoid it, many visual effects and 3rd party tools, such as jQuery, require DOM access.

To illustrate, here's a simplified version of the HighlightDirective from the Attribute Directives page.

Inject the component's DOM element

The directive sets the background to a highlight color when the user mouses over the DOM element to which it
is applied.

Angular sets the constructor's el parameter to the injected ElementRef , which is a wrapper around that
DOM element. Its nativeElement property exposes the DOM element for the directive to manipulate.

The sample code applies the directive's myHighlight attribute to two <div> tags, first without a value
(yielding the default color) and then with an assigned color value.

The following image shows the effect of mousing over the <hero-bios-and-contacts> tag.

{@a providers}

This section demonstrates how to write providers that deliver dependent services.

Get a service from a dependency injector by giving it a token.

You usually let Angular handle this transaction by specifying a constructor parameter and its type. The
parameter type serves as the injector lookup token. Angular passes this token to the injector and assigns the
result to the parameter. Here's a typical example:

Angular asks the injector for the service associated with the LoggerService and assigns the returned
value to the logger parameter.

Where did the injector get that value? It may already have that value in its internal container. If it doesn't, it may
be able to make one with the help of a provider. A provider is a recipe for delivering a service associated with
a token.

If the injector doesn't have a provider for the requested *token*, it delegates the request to its parent injector,

Define dependencies with providers

where the process repeats until there are no more injectors. If the search is futile, the injector throws an error—
unless the request was [optional](guide/dependency-injection-in-action#optional).

A new injector has no providers. Angular initializes the injectors it creates with some providers it cares about.
You have to register your own application providers manually, usually in the providers array of the
Component or Directive metadata:

{@a defining-providers}

The simple class provider is the most typical by far. You mention the class in the providers array and
you're done.

It's that simple because the most common injected service is an instance of a class. But not every dependency
can be satisfied by creating a new instance of a class. You need other ways to deliver dependency values and
that means you need other ways to specify a provider.

The HeroOfTheMonthComponent example demonstrates many of the alternatives and why you need
them. It's visually simple: a few properties and the logs produced by a logger.

The code behind it gives you plenty to think about.

{@a provide}

The provide object literal takes a token and a definition object. The token is usually a class but it doesn't
have to be.

The definition object has a required property that specifies how to create the singleton instance of the service.
In this case, the property.

Defining providers

The provide object literal

{@a usevalue}

Set the useValue property to a fixed value that the provider can return as the service instance (AKA, the
"dependency object").

Use this technique to provide runtime configuration constants such as website base addresses and feature
flags. You can use a value provider in a unit test to replace a production service with a fake or mock.

The HeroOfTheMonthComponent example has two value providers. The first provides an instance of the
Hero class; the second specifies a literal string resource:

The Hero provider token is a class which makes sense because the value is a Hero and the consumer of
the injected hero would want the type information.

The TITLE provider token is not a class. It's a special kind of provider lookup key called an InjectionToken.
You can use an InjectionToken for any kind of provider but it's particular helpful when the dependency is
a simple value like a string, a number, or a function.

The value of a value provider must be defined now. You can't create the value later. Obviously the title string
literal is immediately available. The someHero variable in this example was set earlier in the file:

The other providers create their values lazily when they're needed for injection.

{@a useclass}

The useClass provider creates and returns new instance of the specified class.

Use this technique to substitute an alternative implementation for a common or default class. The
alternative could implement a different strategy, extend the default class, or fake the behavior of the real class
in a test case.

Here are two examples in the HeroOfTheMonthComponent :

The first provider is the de-sugared, expanded form of the most typical case in which the class to be created
(HeroService) is also the provider's dependency injection token. It's in this long form to de-mystify the
preferred short form.

The second provider substitutes the DateLoggerService for the LoggerService . The
LoggerService is already registered at the AppComponent level. When this component requests the

useValue—the value provider

useClass—the class provider

LoggerService , it receives the DateLoggerService instead.

This component and its tree of child components receive the `DateLoggerService` instance. Components
outside the tree continue to receive the original `LoggerService` instance.

The DateLoggerService inherits from LoggerService ; it appends the current date/time to each
message:

{@a useexisting}

The useExisting provider maps one token to another. In effect, the first token is an alias for the service
associated with the second token, creating two ways to access the same service object.

Narrowing an API through an aliasing interface is one important use case for this technique. The following
example shows aliasing for that purpose.

Imagine that the LoggerService had a large API, much larger than the actual three methods and a
property. You might want to shrink that API surface to just the members you actually need. Here the
MinimalLogger class-interface reduces the API to two members:

Now put it to use in a simplified version of the HeroOfTheMonthComponent .

The HeroOfTheMonthComponent constructor's logger parameter is typed as MinimalLogger so
only the logs and logInfo members are visible in a TypeScript-aware editor:

Behind the scenes, Angular actually sets the logger parameter to the full service registered under the
LoggingService token which happens to be the DateLoggerService that was provided above.

The following image, which displays the logging date, confirms the point:

{@a usefactory}

The useFactory provider creates a dependency object by calling a factory function as in this example.

useExisting—the alias provider

useFactory—the factory provider

Use this technique to create a dependency object with a factory function whose inputs are some
combination of injected services and local state.

The dependency object doesn't have to be a class instance. It could be anything. In this example, the
dependency object is a string of the names of the runners-up to the "Hero of the Month" contest.

The local state is the number 2 , the number of runners-up this component should show. It executes
runnersUpFactory immediately with 2 .

The runnersUpFactory itself isn't the provider factory function. The true provider factory function is the
function that runnersUpFactory returns.

That returned function takes a winning Hero and a HeroService as arguments.

Angular supplies these arguments from injected values identified by the two tokens in the deps array. The
two deps values are tokens that the injector uses to provide these factory function dependencies.

After some undisclosed work, the function returns the string of names and Angular injects it into the
runnersUp parameter of the HeroOfTheMonthComponent .

The function retrieves candidate heroes from the `HeroService`, takes `2` of them to be the runners-up, and
returns their concatenated names. Look at the for the full source code.

{@a tokens}

Angular dependency injection is easiest when the provider token is a class that is also the type of the returned
dependency object, or what you usually call the service.

But the token doesn't have to be a class and even when it is a class, it doesn't have to be the same type as the
returned object. That's the subject of the next section. {@a class-interface}

The previous Hero of the Month example used the MinimalLogger class as the token for a provider of a
LoggerService .

The MinimalLogger is an abstract class.

Provider token alternatives: the class-interface and
InjectionToken

class-interface

You usually inherit from an abstract class. But no class in this application inherits from MinimalLogger .

The LoggerService and the DateLoggerService could have inherited from MinimalLogger .
They could have implemented it instead in the manner of an interface. But they did neither. The
MinimalLogger is used exclusively as a dependency injection token.

When you use a class this way, it's called a class-interface. The key benefit of a class-interface is that you can
get the strong-typing of an interface and you can use it as a provider token in the way you would a normal
class.

A class-interface should define only the members that its consumers are allowed to call. Such a narrowing
interface helps decouple the concrete class from its consumers.

Why *MinimalLogger* is a class and not a TypeScript interface You can't use an interface as a provider
token because interfaces are not JavaScript objects. They exist only in the TypeScript design space. They
disappear after the code is transpiled to JavaScript. A provider token must be a real JavaScript object of some
kind: such as a function, an object, a string, or a class. Using a class as an interface gives you the
characteristics of an interface in a real JavaScript object. Of course a real object occupies memory. To
minimize memory cost, the class should have *no implementation*. The `MinimalLogger` transpiles to this
unoptimized, pre-minified JavaScript for a constructor function: Notice that it doesn't have a single member. It
never grows no matter how many members you add to the class *as long as those members are typed but not
implemented*. Look again at the TypeScript `MinimalLogger` class to confirm that it has no implementation.

{@a injection-token}

Dependency objects can be simple values like dates, numbers and strings, or shapeless objects like arrays
and functions.

Such objects don't have application interfaces and therefore aren't well represented by a class. They're better
represented by a token that is both unique and symbolic, a JavaScript object that has a friendly name but won't
conflict with another token that happens to have the same name.

The InjectionToken has these characteristics. You encountered them twice in the Hero of the Month
example, in the title value provider and in the runnersUp factory provider.

You created the TITLE token like this:

The type parameter, while optional, conveys the dependency's type to developers and tooling. The token
description is another developer aid.

InjectionToken

{@a di-inheritance}

Take care when writing a component that inherits from another component. If the base component has injected
dependencies, you must re-provide and re-inject them in the derived class and then pass them down to the
base class through the constructor.

In this contrived example, SortedHeroesComponent inherits from HeroesBaseComponent to display
a sorted list of heroes.

The HeroesBaseComponent could stand on its own. It demands its own instance of the HeroService

to get heroes and displays them in the order they arrive from the database.

Keep constructors simple. They should do little more than initialize variables. This rule makes the
component safe to construct under test without fear that it will do something dramatic like talk to the server.
That's why you call the `HeroService` from within the `ngOnInit` rather than the constructor.

Users want to see the heroes in alphabetical order. Rather than modify the original component, sub-class it and
create a SortedHeroesComponent that sorts the heroes before presenting them. The
SortedHeroesComponent lets the base class fetch the heroes.

Unfortunately, Angular cannot inject the HeroService directly into the base class. You must provide the
HeroService again for this component, then pass it down to the base class inside the constructor.

Now take note of the afterGetHeroes() method. Your first instinct might have been to create an
ngOnInit method in SortedHeroesComponent and do the sorting there. But Angular calls the derived

class's ngOnInit before calling the base class's ngOnInit so you'd be sorting the heroes array before
they arrived. That produces a nasty error.

Overriding the base class's afterGetHeroes() method solves the problem.

These complications argue for avoiding component inheritance.

{@a find-parent}

Inject into a derived class

Application components often need to share information. More loosely coupled techniques such as data
binding and service sharing are preferable. But sometimes it makes sense for one component to have a direct
reference to another component perhaps to access values or call methods on that component.

Obtaining a component reference is a bit tricky in Angular. Although an Angular application is a tree of
components, there is no public API for inspecting and traversing that tree.

There is an API for acquiring a child reference. Check out Query , QueryList , ViewChildren , and
ContentChildren in the API Reference.

There is no public API for acquiring a parent reference. But because every component instance is added to an
injector's container, you can use Angular dependency injection to reach a parent component.

This section describes some techniques for doing that.

{@a known-parent}

You use standard class injection to acquire a parent component whose type you know.

In the following example, the parent AlexComponent has several children including a
CathyComponent :

{@a alex}

Cathy reports whether or not she has access to Alex after injecting an AlexComponent into her constructor:

Notice that even though the @Optional qualifier is there for safety, the confirms that the alex parameter is
set.

{@a base-parent}

What if you don't know the concrete parent component class?

A re-usable component might be a child of multiple components. Imagine a component for rendering breaking
news about a financial instrument. For business reasons, this news component makes frequent calls directly
into its parent instrument as changing market data streams by.

Find a parent component by injection

Find a parent component of known type

Cannot find a parent by its base class

The app probably defines more than a dozen financial instrument components. If you're lucky, they all
implement the same base class whose API your NewsComponent understands.

Looking for components that implement an interface would be better. That's not possible because TypeScript
interfaces disappear from the transpiled JavaScript, which doesn't support interfaces. There's no artifact to look
for.

This isn't necessarily good design. This example is examining whether a component can inject its parent via
the parent's base class.

The sample's CraigComponent explores this question. Looking back, you see that the Alex component
extends (inherits) from a class named Base .

The CraigComponent tries to inject Base into its alex constructor parameter and reports if it
succeeded.

Unfortunately, this does not work. The confirms that the alex parameter is null. You cannot inject a parent
by its base class.

{@a class-interface-parent}

You can find a parent component with a class-interface.

The parent must cooperate by providing an alias to itself in the name of a class-interface token.

Recall that Angular always adds a component instance to its own injector; that's why you could inject Alex into
Cathy earlier.

Write an alias provider—a provide object literal with a useExisting definition—that creates an
alternative way to inject the same component instance and add that provider to the providers array of the
@Component metadata for the AlexComponent :

{@a alex-providers}

Parent is the provider's class-interface token. The forwardRef breaks the circular reference you just created by
having the AlexComponent refer to itself.

Carol, the third of Alex's child components, injects the parent into its parent parameter, the same way
you've done it before:

Here's Alex and family in action:

Find a parent by its class-interface

{@a parent-tree}

Imagine one branch of a component hierarchy: Alice -> Barry -> Carol. Both Alice and Barry implement the
Parent class-interface.

Barry is the problem. He needs to reach his parent, Alice, and also be a parent to Carol. That means he must
both inject the Parent class-interface to get Alice and provide a Parent to satisfy Carol.

Here's Barry:

Barry's providers array looks just like Alex's. If you're going to keep writing alias providers like this you
should create a helper function.

For now, focus on Barry's constructor:

It's identical to Carol's constructor except for the additional @SkipSelf decorator.

@SkipSelf is essential for two reasons:

1. It tells the injector to start its search for a Parent dependency in a component above itself, which is
what parent means.

Find the parent in a tree of parents with @SkipSelf()

2. Angular throws a cyclic dependency error if you omit the @SkipSelf decorator.

Cannot instantiate cyclic dependency! (BethComponent -> Parent -> BethComponent)

Here's Alice, Barry and family in action:

{@a parent-token}

The Parent class-interface

You learned earlier that a class-interface is an abstract class used as an interface rather than as a base class.

The example defines a Parent class-interface.

The Parent class-interface defines a name property with a type declaration but no implementation. The
name property is the only member of a parent component that a child component can call. Such a narrow

interface helps decouple the child component class from its parent components.

A component that could serve as a parent should implement the class-interface as the AliceComponent

does:

Doing so adds clarity to the code. But it's not technically necessary. Although the AlexComponent has a
name property, as required by its Base class, its class signature doesn't mention Parent :

The `AlexComponent` *should* implement `Parent` as a matter of proper style. It doesn't in this example *only*
to demonstrate that the code will compile and run without the interface

{@a provideparent}

Writing variations of the same parent alias provider gets old quickly, especially this awful mouthful with a
forwardRef:

You can extract that logic into a helper function like this:

Now you can add a simpler, more meaningful parent provider to your components:

You can do better. The current version of the helper function can only alias the Parent class-interface. The
application might have a variety of parent types, each with its own class-interface token.

Here's a revised version that defaults to parent but also accepts an optional second parameter for a
different parent class-interface.

And here's how you could use it with a different parent type:

{@a forwardref}

The order of class declaration matters in TypeScript. You can't refer directly to a class until it's been defined.

A provideParent() helper function

Break circularities with a forward class reference
(forwardRef)

This isn't usually a problem, especially if you adhere to the recommended one class per file rule. But
sometimes circular references are unavoidable. You're in a bind when class 'A' refers to class 'B' and 'B' refers
to 'A'. One of them has to be defined first.

The Angular forwardRef() function creates an indirect reference that Angular can resolve later.

The Parent Finder sample is full of circular class references that are impossible to break.

You face this dilemma when a class makes a reference to itself as does the AlexComponent in its
providers array. The providers array is a property of the @Component decorator function which

must appear above the class definition.

Break the circularity with forwardRef :

Dependency injection is an important application design pattern. It's used so widely that almost everyone just
calls it DI.

Angular has its own dependency injection framework, and you really can't build an Angular application without
it.

This page covers what DI is and why it's useful.

When you've learned the general pattern, you're ready to turn to the Angular Dependency Injection guide to
see how it works in an Angular app.

{@a why-di }

To understand why dependency injection is so important, consider an example without it. Imagine writing the
following code:

The Car class creates everything it needs inside its constructor. What's the problem? The problem is that
the Car class is brittle, inflexible, and hard to test.

This Car needs an engine and tires. Instead of asking for them, the Car constructor instantiates its own
copies from the very specific classes Engine and Tires .

What if the Engine class evolves and its constructor requires a parameter? That would break the Car
class and it would stay broken until you rewrote it along the lines of
this.engine = new Engine(theNewParameter) . The Engine constructor parameters weren't

even a consideration when you first wrote Car . You may not anticipate them even now. But you'll have to
start caring because when the definition of Engine changes, the Car class must change. That makes
Car brittle.

What if you want to put a different brand of tires on your Car ? Too bad. You're locked into whatever brand
the Tires class creates. That makes the Car class inflexible.

Right now each new car gets its own engine . It can't share an engine with other cars. While that makes
sense for an automobile engine, surely you can think of other dependencies that should be shared, such as the
onboard wireless connection to the manufacturer's service center. This Car lacks the flexibility to share

The Dependency Injection pattern

Why dependency injection?

services that have been created previously for other consumers.

When you write tests for Car you're at the mercy of its hidden dependencies. Is it even possible to create a
new Engine in a test environment? What does Engine depend upon? What does that dependency
depend on? Will a new instance of Engine make an asynchronous call to the server? You certainly don't
want that going on during tests.

What if the Car should flash a warning signal when tire pressure is low? How do you confirm that it actually
does flash a warning if you can't swap in low-pressure tires during the test?

You have no control over the car's hidden dependencies. When you can't control the dependencies, a class
becomes difficult to test.

How can you make Car more robust, flexible, and testable?

{@a ctor-injection} That's super easy. Change the Car constructor to a version with DI:

See what happened? The definition of the dependencies are now in the constructor. The Car class no
longer creates an engine or tires . It just consumes them.

This example leverages TypeScript's constructor syntax for declaring parameters and properties
simultaneously.

Now you can create a car by passing the engine and tires to the constructor.

How cool is that? The definition of the engine and tire dependencies are decoupled from the Car
class. You can pass in any kind of engine or tires you like, as long as they conform to the general API
requirements of an engine or tires .

Now, if someone extends the Engine class, that is not Car 's problem.

The _consumer_ of `Car` has the problem. The consumer must update the car creation code to something like
this: The critical point is this: the `Car` class did not have to change. You'll take care of the consumer's problem
shortly.

The Car class is much easier to test now because you are in complete control of its dependencies. You can
pass mocks to the constructor that do exactly what you want them to do during each test:

You just learned what dependency injection is.

It's a coding pattern in which a class receives its dependencies from external sources rather than creating them
itself.

Cool! But what about that poor consumer? Anyone who wants a Car must now create all three parts: the

Car , Engine , and Tires . The Car class shed its problems at the consumer's expense. You need
something that takes care of assembling these parts.

You could write a giant class to do that:

It's not so bad now with only three creation methods. But maintaining it will be hairy as the application grows.
This factory is going to become a huge spiderweb of interdependent factory methods!

Wouldn't it be nice if you could simply list the things you want to build without having to define which
dependency gets injected into what?

This is where the dependency injection framework comes into play. Imagine the framework had something
called an injector. You register some classes with this injector, and it figures out how to create them.

When you need a Car , you simply ask the injector to get it for you and you're good to go.

Everyone wins. The Car knows nothing about creating an Engine or Tires . The consumer knows
nothing about creating a Car . You don't have a gigantic factory class to maintain. Both Car and consumer
simply ask for what they need and the injector delivers.

This is what a dependency injection framework is all about.

Now that you know what dependency injection is and appreciate its benefits, turn to the Angular Dependency
Injection guide to see how it is implemented in Angular.

Dependency Injection (DI) is a way to create objects that depend upon other objects. A Dependency Injection
system supplies the dependent objects (called the dependencies) when it creates an instance of an object.

The Dependency Injection pattern page describes this general approach. The guide you're reading now
explains how Angular's own Dependency Injection system works.

You'll learn Angular Dependency Injection through a discussion of the sample app that accompanies this guide.
Run the anytime.

Start by reviewing this simplified version of the heroes feature from the The Tour of Heroes.

The HeroesComponent is the top-level heroes component. It's only purpose is to display the
HeroListComponent which displays a list of hero names.

This version of the HeroListComponent gets its heroes from the HEROES array, an in-memory
collection defined in a separate mock-heroes file.

That may suffice in the early stages of development, but it's far from ideal. As soon as you try to test this
component or get heroes from a remote server, you'll have to change the implementation of
HerosListComponent and replace every other use of the HEROES mock data.

It's better to hide these details inside a service class, defined in its own file.

The Angular CLI can generate a new HeroService class in the src/app/heroes folder with this
command.

ng generate service heroes/hero

That command creates the following HeroService skeleton.

Assume for now that the @Injectable decorator is an essential ingredient in every Angular service
definition. The rest of the class has been rewritten to expose a getHeroes method that returns the same
mock data as before.

Angular Dependency Injection

DI by example

Create an injectable HeroService

Of course, this isn't a real data service. If the app were actually getting data from a remote server, the
getHeroes method signature would have to be asynchronous.

That's a defect we can safely ignore in this guide where our focus is on injecting the service into the
HeroList component.

{@a injector-config} {@a bootstrap}

A service is just a class in Angular until you register it with an Angular dependency injector.

An Angular injector is responsible for creating service instances and injecting them into classes like the
HeroListComponent .

You rarely create an Angular injector yourself. Angular creates injectors for you as it executes the app, starting
with the root injector that it creates during the bootstrap process.

You do have to register providers with an injector before the injector can create that service.

Providers tell the injector how to create the service. Without a provider, the injector would not know that it is
responsible for injecting the service nor be able to create the service.

You'll learn much more about _providers_ [below](#providers). For now it is sufficient to know that they create
services and must be registered with an injector.

You can register a provider with any Angular decorator that supports the providers array property.

Many Angular decorators accept metadata with a providers property. The two most important examples
are @Component and @NgModule .

{@a register-providers-component}

Here's a revised HeroesComponent that registers the HeroService in its providers array.

{@a register-providers-ngmodule}

In the following excerpt, the root AppModule registers two providers in its providers array.

Register a service provider

@Component providers

@NgModule providers

The first entry registers the UserService class (not shown) under the UserService injection token.
The second registers a value (HERO_DI_CONFIG) under the APP_CONFIG injection token.

Thanks to these registrations, Angular can inject the UserService or the HERO_DI_CONFIG value into
any class that it creates.

You'll learn about _injection tokens_ and _provider_ syntax [below](#providers).

{@a ngmodule-vs-comp}

Should you register a service with an Angular module or with a component? The two choices lead to
differences in service scope and service lifetime.

Angular module providers (@NgModule.providers) are registered with the application's root injector.
Angular can inject the corresponding services in any class it creates. Once created, a service instance lives for
the life of the app and Angular injects this one service instance in every class that needs it.

You're likely to inject the UserService in many places throughout the app and will want to inject the same
service instance every time. Providing the UserService with an Angular module is a good choice.

To be precise, Angular module providers are registered with the root injector _unless the module is_ [lazy
loaded](guide/ngmodule#lazy-load-DI). In this sample, all modules are _eagerly loaded_ when the application
starts, so all module providers are registered with the app's root injector.

A component's providers (`@Component.providers`) are registered with each component instance's own
injector. Angular can only inject the corresponding services in that component instance or one of its descendant
component instances. Angular cannot inject the same service instance anywhere else. Note that a component-
provided service may have a limited lifetime. Each new instance of the component gets its own instance of the
service and, when the component instance is destroyed, so is that service instance. In this sample app, the
`HeroComponent` is created when the application starts and is never destroyed so the `HeroService` created
for the `HeroComponent` also live for the life of the app. If you want to restrict `HeroService` access to the
`HeroComponent` and its nested `HeroListComponent`, providing the `HeroService` in the `HeroComponent`
may be a good choice.
The scope and lifetime of component-provided services is a consequence of [the way Angular creates
component instances](#component-child-injectors).

@NgModule or @Component?

Inject a service

The HeroListComponent should get heroes from the HeroService .

The component shouldn't create the HeroService with new . It should ask for the HeroService to be
injected.

You can tell Angular to inject a dependency in the component's constructor by specifying a constructor
parameter with the dependency type. Here's the HeroListComponent constructor, asking for the
HeroService to be injected.

Of course, the HeroListComponent should do something with the injected HeroService . Here's the
revised component, making use of the injected service, side-by-side with the previous version for comparison.

Notice that the HeroListComponent doesn't know where the HeroService comes from. You know that
it comes from the parent HeroesComponent . But if you decided instead to provide the HeroService in
the AppModule , the HeroListComponent wouldn't change at all. The only thing that matters is that the
HeroService is provided in some parent injector.

{@a singleton-services}

Services are singletons within the scope of an injector. There is at most one instance of a service in a given
injector.

There is only one root injector and the UserService is registered with that injector. Therefore, there can be
just one UserService instance in the entire app and every class that injects UserService get this
service instance.

However, Angular DI is a hierarchical injection system, which means that nested injectors can create their own
service instances. Angular creates nested injectors all the time.

{@a component-child-injectors}

For example, when Angular creates a new instance of a component that has @Component.providers , it
also creates a new child injector for that instance.

Component injectors are independent of each other and each of them creates its own instances of the
component-provided services.

Singleton services

Component child injectors

When Angular destroys one of these component instance, it also destroys the component's injector and that
injector's service instances.

Thanks to injector inheritance, you can still inject application-wide services into these components. A
component's injector is a child of its parent component's injector, and a descendent of its parent's parent's
injector, and so on all the way back to the application's root injector. Angular can inject a service provided by
any injector in that lineage.

For example, Angular could inject a HeroListComponent with both the HeroService provided in
HeroComponent and the UserService provided in AppModule .

{@a testing-the-component}

Earlier you saw that designing a class for dependency injection makes the class easier to test. Listing
dependencies as constructor parameters may be all you need to test application parts effectively.

For example, you can create a new HeroListComponent with a mock service that you can manipulate
under test:

Learn more in the [Testing](guide/testing) guide.

{@a service-needs-service}

The HeroService is very simple. It doesn't have any dependencies of its own.

What if it had a dependency? What if it reported its activities through a logging service? You'd apply the same
constructor injection pattern, adding a constructor that takes a Logger parameter.

Here is the revised HeroService that injects the Logger , side-by-side with the previous service for
comparison.

The constructor asks for an injected instance of a Logger and stores it in a private field called logger .
The getHeroes() method logs a message when asked to fetch heroes.

{@a logger-service}

Testing the component

When the service needs a service

The dependent Logger service

The sample app's Logger service is quite simple:

If the app didn't provide this Logger , Angular would throw an exception when it looked for a Logger to
inject into the HeroService .

ERROR Error: No provider for Logger!

Because a singleton logger service is useful everywhere, it's provided in the root AppModule .

{@a injectable}

The @Injectable() decorator identifies a service class that might require injected dependencies.

The HeroService must be annotated with @Injectable() because it requires an injected Logger .

Always write `@Injectable()` with parentheses, not just `@Injectable`.

When Angular creates a class whose constructor has parameters, it looks for type and injection metadata
about those parameters so that it can inject the right service.

If Angular can't find that parameter information, it throws an error.

Angular can only find the parameter information if the class has a decorator of some kind. While any decorator
will do, the @Injectable() decorator is the standard decorator for service classes.

The decorator requirement is imposed by TypeScript. TypeScript normally discards parameter type information
when it _transpiles_ the code to JavaScript. It preserves this information if the class has a decorator and the
`emitDecoratorMetadata` compiler option is set `true` in TypeScript's `tsconfig.json` configuration file, . The CLI
configures `tsconfig.json` with `emitDecoratorMetadata: true` It's your job to put `@Injectable()` on your service
classes.

The Logger service is annotated with @Injectable() decorator too, although it has no constructor and
no dependencies.

In fact, every Angular service class in this app is annotated with the @Injectable() decorator, whether or
not it has a constructor and dependencies. @Injectable() is a required coding style for services.

{@a providers}

@Injectable()

Providers

A service provider provides the concrete, runtime version of a dependency value. The injector relies on
providers to create instances of the services that the injector injects into components, directives, pipes, and
other services.

You must register a service provider with an injector, or it won't know how to create the service.

The next few sections explain the many ways you can specify a provider.

Almost all of the accompanying code snippets are extracts from the sample app's
providers.component.ts file.

There are many ways to provide something that looks and behaves like a Logger . The Logger class
itself is an obvious and natural provider.

But it's not the only way.

You can configure the injector with alternative providers that can deliver an object that behaves like a
Logger . You could provide a substitute class. You could provide a logger-like object. You could give it a

provider that calls a logger factory function. Any of these approaches might be a good choice under the right
circumstances.

What matters is that the injector has a provider to go to when it needs a Logger .

{@a provide}

Here's the class-provider syntax again.

This is actually a shorthand expression for a provider registration using a provider object literal with two
properties:

The provide property holds the token that serves as the key for both locating a dependency value and
registering the provider.

The second property is always a provider definition object, which you can think of as a recipe for creating the
dependency value. There are many ways to create dependency values just as there are many ways to write a
recipe.

{@a class-provider}

The class as its own provider

The provide object literal

Occasionally you'll ask a different class to provide the service. The following code tells the injector to return a
BetterLogger when something asks for the Logger .

{@a class-provider-dependencies}

Maybe an EvenBetterLogger could display the user name in the log message. This logger gets the user
from the injected UserService , which is also injected at the application level.

Configure it like BetterLogger .

{@a aliased-class-providers}

Suppose an old component depends upon an OldLogger class. OldLogger has the same interface as
the NewLogger , but for some reason you can't update the old component to use it.

When the old component logs a message with OldLogger , you'd like the singleton instance of
NewLogger to handle it instead.

The dependency injector should inject that singleton instance when a component asks for either the new or the
old logger. The OldLogger should be an alias for NewLogger .

You certainly do not want two different NewLogger instances in your app. Unfortunately, that's what you get
if you try to alias OldLogger to NewLogger with useClass .

The solution: alias with the useExisting option.

{@a value-provider}

Sometimes it's easier to provide a ready-made object rather than ask the injector to create it from a class.

Then you register a provider with the useValue option, which makes this object play the logger role.

See more useValue examples in the Non-class dependencies and InjectionToken sections.

{@a factory-provider}

Alternative class providers

Class provider with dependencies

Aliased class providers

Value providers

Sometimes you need to create the dependent value dynamically, based on information you won't have until the
last possible moment. Maybe the information changes repeatedly in the course of the browser session.

Suppose also that the injectable service has no independent access to the source of this information.

This situation calls for a factory provider.

To illustrate the point, add a new business requirement: the HeroService must hide secret heroes from
normal users. Only authorized users should see secret heroes.

Like the EvenBetterLogger , the HeroService needs a fact about the user. It needs to know if the
user is authorized to see secret heroes. That authorization can change during the course of a single application
session, as when you log in a different user.

Unlike EvenBetterLogger , you can't inject the UserService into the HeroService . The
HeroService won't have direct access to the user information to decide who is authorized and who is not.

Instead, the HeroService constructor takes a boolean flag to control display of secret heroes.

You can inject the Logger , but you can't inject the boolean isAuthorized . You'll have to take over the
creation of new instances of this HeroService with a factory provider.

A factory provider needs a factory function:

Although the HeroService has no access to the UserService , the factory function does.

You inject both the Logger and the UserService into the factory provider and let the injector pass them
along to the factory function:

The `useFactory` field tells Angular that the provider is a factory function whose implementation is the
`heroServiceFactory`. The `deps` property is an array of [provider tokens](guide/dependency-injection#token).
The `Logger` and `UserService` classes serve as tokens for their own class providers. The injector resolves
these tokens and injects the corresponding services into the matching factory function parameters.

Notice that you captured the factory provider in an exported variable, heroServiceProvider . This extra
step makes the factory provider reusable. You can register the HeroService with this variable wherever
you need it.

In this sample, you need it only in the HeroesComponent , where it replaces the previous HeroService

registration in the metadata providers array. Here you see the new and the old implementation side-by-
side:

Factory providers

{@a token}

When you register a provider with an injector, you associate that provider with a dependency injection token.
The injector maintains an internal token-provider map that it references when asked for a dependency. The
token is the key to the map.

In all previous examples, the dependency value has been a class instance, and the class type served as its
own lookup key. Here you get a HeroService directly from the injector by supplying the HeroService

type as the token:

You have similar good fortune when you write a constructor that requires an injected class-based dependency.
When you define a constructor parameter with the HeroService class type, Angular knows to inject the
service associated with that HeroService class token:

This is especially convenient when you consider that most dependency values are provided by classes.

{@a non-class-dependencies}

What if the dependency value isn't a class? Sometimes the thing you want to inject is a string, function, or
object.

Applications often define configuration objects with lots of small facts (like the title of the application or the
address of a web API endpoint) but these configuration objects aren't always instances of a class. They can be
object literals such as this one:

What if you'd like to make this configuration object available for injection? You know you can register an object
with a value provider.

But what should you use as the token? You don't have a class to serve as a token. There is no AppConfig

class.

TypeScript interfaces aren't valid tokens The `HERO_DI_CONFIG` constant conforms to the `AppConfig`
interface. Unfortunately, you cannot use a TypeScript interface as a token: That seems strange if you're used to
dependency injection in strongly typed languages, where an interface is the preferred dependency lookup key.
It's not Angular's doing. An interface is a TypeScript design-time artifact. JavaScript doesn't have interfaces.
The TypeScript interface disappears from the generated JavaScript. There is no interface type information left
for Angular to find at runtime.

Dependency injection tokens

Non-class dependencies

{@a injection-token}

One solution to choosing a provider token for non-class dependencies is to define and use an InjectionToken.
The definition of such a token looks like this:

The type parameter, while optional, conveys the dependency's type to developers and tooling. The token
description is another developer aid.

Register the dependency provider using the InjectionToken object:

Now you can inject the configuration object into any constructor that needs it, with the help of an @Inject

decorator:

Although the `AppConfig` interface plays no role in dependency injection, it supports typing of the configuration
object within the class.

Alternatively, you can provide and inject the configuration object in an ngModule like AppModule .

{@a optional}

The HeroService requires a Logger , but what if it could get by without a logger ? You can tell
Angular that the dependency is optional by annotating the constructor argument with @Optional() :

When using @Optional() , your code must be prepared for a null value. If you don't register a logger

somewhere up the line, the injector will set the value of logger to null.

You learned the basics of Angular dependency injection in this page. You can register various kinds of
providers, and you know how to ask for an injected object (such as a service) by adding a parameter to a
constructor.

Angular dependency injection is more capable than this guide has described. You can learn more about its
advanced features, beginning with its support for nested injectors, in Hierarchical Dependency Injection.

{@a explicit-injector}

InjectionToken

Optional dependencies

Summary

Developers rarely work directly with an injector, but here's an InjectorComponent that does.

An Injector is itself an injectable service.

In this example, Angular injects the component's own Injector into the component's constructor. The
component then asks the injected injector for the services it wants in ngOnInit() .

Note that the services themselves are not injected into the component. They are retrieved by calling
injector.get() .

The get() method throws an error if it can't resolve the requested service. You can call get() with a
second parameter, which is the value to return if the service is not found. Angular can't find the service if it's not
registered with this or any ancestor injector.

The technique is an example of the [service locator pattern]
(https://en.wikipedia.org/wiki/Service_locator_pattern). **Avoid** this technique unless you genuinely need it. It
encourages a careless grab-bag approach such as you see here. It's difficult to explain, understand, and test.
You can't know by inspecting the constructor what this class requires or what it will do. It could acquire services
from any ancestor component, not just its own. You're forced to spelunk the implementation to discover what it
does. Framework developers may take this approach when they must acquire services generically and
dynamically.

{@a one-class-per-file}

Having multiple classes in the same file is confusing and best avoided. Developers expect one class per file.
Keep them happy.

If you combine the HeroService class with the HeroesComponent in the same file, define the
component last. If you define the component before the service, you'll get a runtime null reference error.

You actually can define the component first with the help of the `forwardRef()` method as explained in this [blog
post](http://blog.thoughtram.io/angular/2015/09/03/forward-references-in-angular-2.html). But it's best to avoid
the problem altogether by defining components and services in separate files.

Appendix: Working with injectors directly

Appendix: one class per file

This page describes techniques for deploying your Angular application to a remote server.

{@a dev-deploy} {@a copy-files}

For the simplest deployment, build for development and copy the output directory to a web server.

1. Start with the development build

ng build

2. Copy everything within the output folder (dist/ by default) to a folder on the server.

3. If you copy the files into a server sub-folder, append the build flag, --base-href and set the
<base href> appropriately.

For example, if the index.html is on the server at /my/app/index.html , set the base href to
<base href="/my/app/"> like this.

ng build --base-href=/my/app/

You'll see that the <base href> is set properly in the generated dist/index.html .

If you copy to the server's root directory, omit this step and leave the <base href> alone.

Learn more about the role of <base href> below.

4. Configure the server to redirect requests for missing files to index.html . Learn more about server-
side redirects below.

This is not a production deployment. It's not optimized and it won't be fast for users. It might be good enough
for sharing your progress and ideas internally with managers, teammates, and other stakeholders.

{@a optimize}

Deployment

Simplest deployment possible

Although deploying directly from the development environment works, you can generate an optimized build
with additional CLI command line flags, starting with --prod .

ng build --prod

The --prod meta-flag engages the following optimization features.

Ahead-of-Time (AOT) Compilation: pre-compiles Angular component templates.
Production mode: deploys the production environment which enables production mode.
Bundling: concatenates your many application and library files into a few bundles.
Minification: removes excess whitespace, comments, and optional tokens.
Uglification: rewrites code to use short, cryptic variable and function names.
Dead code elimination: removes unreferenced modules and much unused code.

The remaining copy deployment steps are the same as before.

You may further reduce bundle sizes by adding the build-optimizer flag.

ng build --prod --build-optimizer

See the CLI Documentation for details about available build options and what they do.

{@a enable-prod-mode}

Angular apps run in development mode by default, as you can see by the following message on the browser
console:

Angular is running in the development mode. Call enableProdMode() to enable the production mode.

Switching to production mode can make it run faster by disabling development specific checks such as the dual
change detection cycles.

Building for production (or appending the --environment=prod flag) enables production mode Look at
the CLI-generated main.ts to see how this works.

{@a lazy-loading}

Optimize for production

Build with --prod

Enable production mode

You can dramatically reduce launch time by only loading the application modules that absolutely must be
present when the app starts.

Configure the Angular Router to defer loading of all other modules (and their associated code), either by
waiting until the app has launched or by lazy loading them on demand.

It's a common mistake. You've arranged to lazy load a module. But you unintentionally import it, with a
JavaScript import statement, in a file that's eagerly loaded when the app starts, a file such as the root
AppModule . If you do that, the module will be loaded immediately.

The bundling configuration must take lazy loading into consideration. Because lazy loaded modules aren't
imported in JavaScript (as just noted), bundlers exclude them by default. Bundlers don't know about the router
configuration and won't create separate bundles for lazy loaded modules. You have to create these bundles
manually.

The CLI runs the Angular Ahead-of-Time Webpack Plugin which automatically recognizes lazy loaded
NgModules and creates separate bundles for them.

{@a measure}

You can make better decisions about what to optimize and how when you have a clear and accurate
understanding of what's making the application slow. The cause may not be what you think it is. You can waste
a lot of time and money optimizing something that has no tangible benefit or even makes the app slower. You
should measure the app's actual behavior when running in the environments that are important to you.

The Chrome DevTools Network Performance page is a good place to start learning about measuring
performance.

The WebPageTest tool is another good choice that can also help verify that your deployment was successful.

{@a inspect-bundle}

The source-map-explorer tool is a great way to inspect the generated JavaScript bundles after a production
build.

Lazy loading

Don't eagerly import something from a lazy loaded module

Measure performance

Inspect the bundles

Install source-map-explorer :

npm install source-map-explorer --save-dev

Build your app for production including the source maps

ng build --prod --sourcemaps

List the generated bundles in the dist/ folder.

ls dist/*.bundle.js

Run the explorer to generate a graphical representation of one of the bundles. The following example displays
the graph for the main bundle.

node_modules/.bin/source-map-explorer dist/main.*.bundle.js

The source-map-explorer analyzes the source map generated with the bundle and draws a map of all
dependencies, showing exactly which classes are included in the bundle.

Here's the output for the main bundle of the QuickStart.

{@a base-tag}

The HTML <base href="..."/> specifies a base path for resolving relative URLs to assets such as images,
scripts, and style sheets. For example, given the <base href="/my/app/"> , the browser resolves a URL
such as some/place/foo.jpg into a server request for my/app/some/place/foo.jpg . During
navigation, the Angular router uses the base href as the base path to component, template, and module files.

See also the [*APP_BASE_HREF*](api/common/APP_BASE_HREF "API: APP_BASE_HREF") alternative.

In development, you typically start the server in the folder that holds index.html . That's the root folder and
you'd add <base href="/"> near the top of index.html because / is the root of the app.

But on the shared or production server, you might serve the app from a subfolder. For example, when the URL
to load the app is something like http://www.mysite.com/my/app/ , the subfolder is my/app/ and
you should add <base href="/my/app/"> to the server version of the index.html .

When the base tag is mis-configured, the app fails to load and the browser console displays

The base tag

404 - Not Found errors for the missing files. Look at where it tried to find those files and adjust the base
tag appropriately.

You'll probably prefer ng build for deployments.

The ng build command is intended for building the app and deploying the build artifacts elsewhere. The ng
serve command is intended for fast, local, iterative development.

Both ng build and ng serve clear the output folder before they build the project. The ng build
command writes generated build artifacts to the output folder. The ng serve command does not. It serves
build artifacts from memory instead for a faster development experience.

The output folder is `dist/` by default. To output to a different folder, change the `outDir` in `.angular-cli.json`.

The ng serve command builds, watches, and serves the application from a local CLI development server.

The ng build command generates output files just once and does not serve them. The
ng build --watch command will regenerate output files when source files change. This --watch flag

is useful if you're building during development and are automatically re-deploying changes to another server.

See the CLI build topic for more details and options.

{@a server-configuration}

This section covers changes you may have make to the server or to files deployed to the server.

{@a fallback}

Angular apps are perfect candidates for serving with a simple static HTML server. You don't need a server-side
engine to dynamically compose application pages because Angular does that on the client-side.

If the app uses the Angular router, you must configure the server to return the application's host page
(index.html) when asked for a file that it does not have.

{@a deep-link}

build vs. serve

Server configuration

Routed apps must fallback to index.html

A routed application should support "deep links". A deep link is a URL that specifies a path to a component
inside the app. For example, http://www.mysite.com/heroes/42 is a deep link to the hero detail page
that displays the hero with id: 42 .

There is no issue when the user navigates to that URL from within a running client. The Angular router
interprets the URL and routes to that page and hero.

But clicking a link in an email, entering it in the browser address bar, or merely refreshing the browser while on
the hero detail page — all of these actions are handled by the browser itself, outside the running application.
The browser makes a direct request to the server for that URL, bypassing the router.

A static server routinely returns index.html when it receives a request for
http://www.mysite.com/ . But it rejects http://www.mysite.com/heroes/42 and returns a
404 - Not Found error unless it is configured to return index.html instead.

There is no single configuration that works for every server. The following sections describe configurations for
some of the most popular servers. The list is by no means exhaustive, but should provide you with a good
starting point.

Lite-Server: the default dev server installed with the Quickstart repo is pre-configured to fallback to
index.html .

Webpack-Dev-Server: setup the historyApiFallback entry in the dev server options as follows:

historyApiFallback: { disableDotRule: true, htmlAcceptHeaders: ['text/html', 'application/xhtml+xml'] }

Apache: add a rewrite rule to the .htaccess file as shown (https://ngmilk.rocks/2015/03/09/angularjs-
html5-mode-or-pretty-urls-on-apache-using-htaccess/):

RewriteEngine On # If an existing asset or directory is requested go to it as it is RewriteCond %
{DOCUMENTROOT}%{REQUESTURI} -f [OR] RewriteCond %{DOCUMENTROOT}%{REQUESTURI} -d
RewriteRule ^ - [L]

If the requested resource doesn't exist, use index.html RewriteRule ^ /index.html

NGinx: use try_files , as described in Front Controller Pattern Web Apps, modified to serve

Fallback configuration examples

Development servers

Production servers

index.html :

try_files $uri $uri/ /index.html;

IIS: add a rewrite rule to web.config , similar to the one shown here:

<system.webServer> <rewrite> <rules> <rule name="Angular Routes" stopProcessing="true"> <match
url=".*" /> <conditions logicalGrouping="MatchAll"> <add input="{REQUESTFILENAME}"
matchType="IsFile" negate="true" /> <add input="{REQUESTFILENAME}" matchType="IsDirectory"
negate="true" /> </conditions> <action type="Rewrite" url="/src/" /> </rule> </rules> </rewrite>
</system.webServer>

GitHub Pages: you can't directly configure the GitHub Pages server, but you can add a 404 page. Copy
index.html into 404.html . It will still be served as the 404 response, but the browser will process

that page and load the app properly. It's also a good idea to serve from docs/ on master and to create
a .nojekyll file

Firebase hosting: add a rewrite rule.

"rewrites": [{ "source": "**", "destination": "/index.html" }]

{@a cors}

Angular developers may encounter a cross-origin resource sharing error when making a service request
(typically a data service request). to a server other than the application's own host server. Browsers forbid such
requests unless the server permits them explicitly.

There isn't anything the client application can do about these errors. The server must be configured to accept
the application's requests. Read about how to enable CORS for specific servers at enable-cors.org.

Requesting services from a different server (CORS)

You can display data by binding controls in an HTML template to properties of an Angular component.

In this page, you'll create a component with a list of heroes. You'll display the list of hero names and
conditionally show a message below the list.

The final UI looks like this:

The demonstrates all of the syntax and code snippets described in this page.

{@a interpolation}

The easiest way to display a component property is to bind the property name through interpolation. With
interpolation, you put the property name in the view template, enclosed in double curly braces:
{{myHero}} .

Follow the quickstart instructions for creating a new project named displaying-data .

Delete the app.component.html file. It is not needed for this example.

Then modify the app.component.ts file by changing the template and the body of the component.

Displaying Data

Showing component properties with interpolation

When you're done, it should look like this:

You added two properties to the formerly empty component: title and myHero .

The template displays the two component properties using double curly brace interpolation:

The template is a multi-line string within ECMAScript 2015 backticks (\`). The backtick (\`)—which is
not the same character as a single quote (`'`)—allows you to compose a string over several lines, which
makes the HTML more readable.

Angular automatically pulls the value of the title and myHero properties from the component and
inserts those values into the browser. Angular updates the display when these properties change.

More precisely, the redisplay occurs after some kind of asynchronous event related to the view, such as a
keystroke, a timer completion, or a response to an HTTP request.

Notice that you don't call new to create an instance of the AppComponent class. Angular is creating an
instance for you. How?

The CSS selector in the @Component decorator specifies an element named <app-root> . That
element is a placeholder in the body of your index.html file:

When you bootstrap with the AppComponent class (in main.ts), Angular looks for a <app-root> in
the index.html , finds it, instantiates an instance of AppComponent , and renders it inside the
<app-root> tag.

Now run the app. It should display the title and hero name:

The next few sections review some of the coding choices in the app.

You can store your component's template in one of two places. You can define it inline using the template
property, or you can define the template in a separate HTML file and link to it in the component metadata using
the @Component decorator's templateUrl property.

Template inline or template file?

The choice between inline and separate HTML is a matter of taste, circumstances, and organization policy.
Here the app uses inline HTML because the template is small and the demo is simpler without the additional
HTML file.

In either style, the template data bindings have the same access to the component's properties.

By default, the Angular CLI generates components with a template file. You can override that with: ng generate
component hero -it

Although this example uses variable assignment to initialize the components, you could instead declare and
initialize the properties using a constructor:

This app uses more terse "variable assignment" style simply for brevity.

{@a ngFor}

To display a list of heroes, begin by adding an array of hero names to the component and redefine myHero
to be the first name in the array.

Now use the Angular ngFor directive in the template to display each item in the heroes list.

This UI uses the HTML unordered list with and tags. The *ngFor in the element is
the Angular "repeater" directive. It marks that element (and its children) as the "repeater template":

Don't forget the leading asterisk (*) in `*ngFor`. It is an essential part of the syntax. For more information, see
the [Template Syntax](guide/template-syntax#ngFor) page.

Notice the hero in the ngFor double-quoted instruction; it is an example of a template input variable.
Read more about template input variables in the microsyntax section of the Template Syntax page.

Angular duplicates the for each item in the list, setting the hero variable to the item (the hero) in the
current iteration. Angular uses that variable as the context for the interpolation in the double curly braces.

In this case, `ngFor` is displaying an array, but `ngFor` can repeat items for any [iterable]
(https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols) object.

Now the heroes appear in an unordered list.

Constructor or variable initialization?

Showing an array property with *ngFor

The app's code defines the data directly inside the component, which isn't best practice. In a simple demo,
however, it's fine.

At the moment, the binding is to an array of strings. In real applications, most bindings are to more specialized
objects.

To convert this binding to use specialized objects, turn the array of hero names into an array of Hero
objects. For that you'll need a Hero class:

ng generate class hero

With the following code:

You've defined a class with a constructor and two properties: id and name .

It might not look like the class has properties, but it does. The declaration of the constructor parameters takes
advantage of a TypeScript shortcut.

Consider the first parameter:

That brief syntax does a lot:

Declares a constructor parameter and its type.
Declares a public property of the same name.
Initializes that property with the corresponding argument when creating an instance of the class.

Creating a class for the data

Using the Hero class

After importing the Hero class, the AppComponent.heroes property can return a typed array of Hero
objects:

Next, update the template. At the moment it displays the hero's id and name . Fix that to display only the
hero's name property.

The display looks the same, but the code is clearer.

{@a ngIf}

Sometimes an app needs to display a view or a portion of a view only under specific circumstances.

Let's change the example to display a message if there are more than three heroes.

The Angular ngIf directive inserts or removes an element based on a truthy/falsy condition. To see it in
action, add the following paragraph at the bottom of the template:

Don't forget the leading asterisk (*) in `*ngIf`. It is an essential part of the syntax. Read more about `ngIf` and
`*` in the [ngIf section](guide/template-syntax#ngIf) of the [Template Syntax](guide/template-syntax) page.

The template expression inside the double quotes, *ngIf="heroes.length > 3" , looks and behaves
much like TypeScript. When the component's list of heroes has more than three items, Angular adds the
paragraph to the DOM and the message appears. If there are three or fewer items, Angular omits the
paragraph, so no message appears. For more information, see the template expressions section of the
Template Syntax page.

Angular isn't showing and hiding the message. It is adding and removing the paragraph element from the
DOM. That improves performance, especially in larger projects when conditionally including or excluding big
chunks of HTML with many data bindings.

Try it out. Because the array has four items, the message should appear. Go back into
app.component.ts" and delete or comment out one of the elements from the hero array. The browser

should refresh automatically and the message should disappear.

Now you know how to use:

Interpolation with double curly braces to display a component property.

Conditional display with NgIf

Summary

ngFor to display an array of items.
A TypeScript class to shape the model data for your component and display properties of that model.
ngIf to conditionally display a chunk of HTML based on a boolean expression.

Here's the final code:

This page presents design and layout guidelines for Angular documentation pages. These guidelines should be followed by all guide page authors. Deviations must be approved by the
documentation editor.

Most guide pages should have accompanying sample code with special markup for the code snippets on the page. Code samples should adhere to the style guide for Angular
applications because readers expect consistency.

For clarity and precision, every guideline on this page is illustrated with a working example, followed by the page markup for that example ... as shown here.

 followed by the page markup for that example ... as shown here.

To make changes to the documentation pages and sample code, clone the Angular github repository and go to the aio/ folder.

The aio/README.md explains how to install and use the tools to edit and test your changes.

Here are a few essential commands for guide page authors.

1. yarn setup — installs packages; builds docs, plunkers, and zips.

2. yarn docs-watch --watch-only — watches for saved content changes and refreshes the browser. The (optional) --watch-only flag skips the initial docs rebuild.

3. yarn start — starts the doc viewer application so you can see your local changes in the browser.

4. http://localhost:4200/ — browse to the app running locally.

All but a few guide pages are markdown files with an .md extension.

Every guide page file is stored in the content/guide directory. Although the side navigation panel displays as a hierarchy, the directory is flat with no sub-folders. The flat folder
approach allows us to shuffle the apparent navigation structure without moving page files or redirecting old page URLs.

The doc generation process consumes the markdown files in the content/guide directory and produces JSON files in the src/generated/docs/guide directory, which is
also flat. Those JSON files contain a combination of document metadata and HTML content.

The reader requests a page by its Page URL. The doc viewer fetches the corresponding JSON file, interprets it, and renders it as fully-formed HTML page.

Page URLs mirror the content file structure. The URL for the page of a guide is in the form guide/{page-name} . The page for this "Authors Style Guide" is located at
content/guide/docs-style-guide.md and its URL is guide/docs-style-guide .

Tutorial pages are exactly like guide pages. The only difference is that they reside in `content/tutorial` instead of `content/guide` and have URLs like `tutorial/{page-name}`. _API_
pages are generated from Angular source code into the `src/generated/docs/api` directory. The doc viewer translates URLs that begin `api/` into requests for document JSON files in that
directory. This style guide does not discuss creation or maintenance of API pages. _Marketing_ pages are similar to guide pages. They're located in the `content/marketing` directory.
While they can be markdown files, they may be static HTML pages or dynamic HTML pages that render with JSON data. Only a few people are authorized to write marketing pages. This
style guide does not discuss creation or maintenance of marketing pages.

While documentation guide pages ultimately render as HTML, almost all of them are written in markdown.

Markdown is easier to read and to edit than HTML. Many editors (including Visual Studio Code) can render markdown as you type it.

From time to time you'll have to step away from markdown and write a portion of the document in HTML. Markdown allows you to mix HTML and markdown in the same document.

Standard markdown processors don't allow you to put markdown within HTML tags. But the Angular documentation markdown processor supports markdown within HTML, as long as
you follow one rule:

Always follow every opening and closing HTML tag with _a blank line_.

Authors Style Guide

Doc generation and tooling

Guide pages

Markdown and HTML

<div class="alert is-critical">

 Always follow every opening and closing HTML tag with _a blank line_.

</div>

It is customary but not required to _precede_ the _closing HTML_ tag with a blank line as well.

Every guide document must have a title.

The title should appear at the top of the physical page. Begin the title with the markdown # character. Alternatively, you can write the equivalent <h1> .

 # Authors Style Guide

Only one title (<h1>) per document!

Title text should be in "Title Case", which means that you use capital letters to start the first words and all principal words. Use lower case letters for _secondary words such as "in", "of",
and "the".

 # The Meat of the Matter

Always follow the title with at least one blank line.

A typical document is divided into sections.

All section heading text should be in "Sentence case", which means the first word is capitalized and all other words are lower case.

Always follow the section heading with at least one blank line.

There are usually one or more main sections that may be further divided into secondary sections.

Begin a main section heading with the markdown ## characters. Alternatively, you can write the equivalent <h2> HTML tag.

The main section heading should be followed by a blank line and then the content for that heading.

 ## Sections

 A typical document is divided into sections.

A secondary section heading is related to a main heading and falls textually within the bounds of that main heading.

Begin a secondary heading with the markdown ### characters. Alternatively, you can write the equivalent <h3> HTML tag.

The secondary heading should be followed by a blank line and then the content for that heading.

 ### Secondary section heading

 A secondary section ...

Try to minimize the heading depth, preferably only two. But more headings, such as this one, are permitted if they make sense.

N.B.: The Table-of-contents generator only considers main (<h2>) and secondary (<h3>) headings.

 #### Additional section headings

 Try to minimize ...

Title

Sections

Main section heading

Secondary section heading

Additional section headings

Subsections typically present extra detail and references to other pages.

Use subsections for commentary that enriches the reader's understanding of the text that precedes it.

A subsection must not contain anything essential to that understanding. Don't put a critical instruction or a tutorial step in a subsection.

A subsection is content within a <div> that has the l-sub-section CSS class. You should write the subsection content in markdown.

Here is an example of a subsection <div> surrounding the subsection content written in markdown.

You'll learn about styles for live examples in the [section below](guide/docs-style-guide#live-examples "Live examples").

<div class="l-sub-section">

You'll learn about styles for live examples in the [section below](guide/docs-style-guide#live-examples "Live examples").

</div>

Note that at least one blank line must follow the opening <div> . A blank line before the closing </div> is customary but not required.

Most pages display a table of contents (TOC). The TOC appears in the right panel when the viewport is wide. When narrow, the TOC appears in an expandable/collapsible region near
the top of the page.

You should not create your own TOC by hand. The TOC is generated automatically from the page's main and secondary section headers.

To exclude a heading from the TOC, create the heading as an <h2> or <h3> element with a class called 'no-toc'. You can't do this with markdown.

<h3 class="no-toc">
This heading is not displayed in the TOC
</h3>

You can turn off TOC generation for the entire page by writing the title with an <h1> tag and the no-toc class.

<h1 class="no-toc">
A guide without a TOC
</h1>

The navigation links at the top, left, and bottom of the screen are generated from the JSON configuration file, content/navigation.json .

The authority to change the navigation.json file is limited to a few core team members. But for a new guide page, you should suggest a navigation title and position in the left-side
navigation panel called the "side nav".

Look for the SideNav node in navigation.json . The SideNav node is an array of navigation nodes. Each node is either an item node for a single document or a header
node with child nodes.

Find the header for your page. For example, a guide page that describes an Angular feature is probably a child of the Fundamentals header.

{
 "title": "Fundamentals",
 "tooltip": "The fundamentals of Angular",
 "children": [...]
}

A header node child can be an item node or another header node. If your guide page belongs under a sub-header, find that sub-header in the JSON.

Add an item node for your guide page as a child of the appropriate header node. It probably looks something like this one.

Subsections

Table of contents

Navigation

{
 "url": "guide/architecture",
 "title": "Architecture",
 "tooltip": "The basic building blocks of Angular applications."
}

A navigation node has the following properties:

url - the URL of the guide page (item node only).

title - the text displayed in the side nav.

tooltip - text that appears when the reader hovers over the navigation link.

children - an array of child nodes (header node only).

hidden - defined and set true if this is a guide page that should not be displayed in the navigation panel. Rarely needed, it is a way to hide the page from navigation while making
it available to readers who should know about it. This "Authors Style Guide" is a hidden page.

Do not create a node that is both a _header_ and an _item_ node. That is, do not specify the `url` property of a _header_ node.
The current guidelines allow for a three-level navigation structure with two header levels. Don't add a third header level.

Guides are rich in examples of working Angular code. Example code can be commands entered in a terminal window, a fragment of TypeScript or HTML, or an entire code file.

Whatever the source, the doc viewer renders them as "code snippets", either individually with the code-example component or as a tabbed collection with the code-tabs component.

{@a code-example}

You can display a simple, inline code snippet with the markdown backtick syntax. We generally prefer to display a code snippet with the Angular documentation code-example
component represented by the <code-example> tag.

You should source code snippets from working sample code when possible. But there are times when an inline snippet is the better choice.

For terminal input and output, put the content between <code-example> tags, set the CSS class to code-shell , and set the language attribute to sh as in this example.

npm start

<code-example language="sh" class="code-shell">
 npm start
</code-example>

Inline, hand-coded snippets like this one are not testable and, therefore, are intrinsically unreliable. This example belongs to the small set of pre-approved, inline snippets that includes
user input in a command shell or the output of some process.

Do not write inline code snippets unless you have a good reason and the editor's permission to do so. In all other cases, code snippets should be generated automatically from tested
code samples.

{@a from-code-samples}

One of the documentation design goals is that guide page code snippets should be examples of real, working code.

We meet this goal by displaying code snippets that are derived directly from standalone code samples, written specifically for these guide pages.

The author of a guide page is responsible for the code sample that supports that page. The author must also write end-to-end tests for the sample.

Code samples are located in sub-folders of the content/examples directory of the angular/angular repository. An example folder name should be the same as the guide
page it supports.

A guide page might not have its own sample code. It might refer instead to a sample belonging to another page.

The Angular CI process runs all end-to-end tests for every Angular PR. Angular re-tests the samples after every new version of a sample and every new version of Angular itself.

Code snippets

Code example

Inline code-snippets

Code snippets and code samples

When possible, every snippet of code on a guide page should be derived from a code sample file. You tell the Angular documentation engine which code file - or fragment of a code file -
to display by configuring <code-example> attributes.

This "Authors Doc Style Guide" has its own sample application, located in the content/examples/docs-style-guide folder.

The following code-example displays the sample's app.module.ts .

Here's the brief markup that produced that lengthy snippet:

<code-example
 path="docs-style-guide/src/app/app.module.ts"
 title="src/app/app.module.ts">
</code-example>

You identified the snippet's source file by setting the path attribute to sample folder's location within content/examples . In this example, that path is
docs-style-guide/src/app/app.module.ts .

You added a header to tell the reader where to find the file by setting the title attribute. Following convention, you set the title attribute to the file's location within the sample's
root folder.

Unless otherwise noted, all code snippets in this page are derived from sample source code located in the `content/examples/docs-style-guide` directory.
The doc tooling reports an error if the file identified in the path does not exist **or is _git_-ignored**. Most `.js` files are _git_-ignored. If you want to include an ignored code file in your
project and display it in a guide you must _un-ignore_ it. The preferred way to un-ignore a file is to update the `content/examples/.gitignore` like this: # my-guide !my-
guide/src/something.js !my-guide/more-javascript*.js

You control the code-example output by setting one or more of its attributes:

path - the path to the file in the content/examples folder.

title - the header of the code listing.

region - displays the source file fragment with that region name; regions are identified by docregion markup in the source file, as explained below.

linenums - value may be true , false , or a number . When not specified, line numbers are automatically displayed when there are greater than 10 lines of code. The
rarely used number option starts line numbering at the given value. linenums=4 sets the starting line number to 4.

class - code snippets can be styled with the CSS classes no-box , code-shell , and avoid .

hideCopy - hides the copy button

language - the source code language such as javascript , html , css , typescript , json , or sh . This attribute only works for inline examples.

{@a region}

Often you want to focus on a fragment of code within a sample code file. In this example, you focus on the AppModule class and its NgModule metadata.

First you surround that fragment in the source file with a named docregion as described below. Then you reference that docregion in the region attribute of the <code-example>

like this

<code-example
 path="docs-style-guide/src/app/app.module.ts"
 region="class">
</code-example>

A couple of observations:

1. The region value, "class" , is the name of the #docregion in the source file. Confirm that by looking at
content/examples/docs-style-guide/src/app/app.module.ts

2. Omitting the title is fine when the source of the fragment is obvious. We just said that this is a fragment of the app.module.ts file which was displayed immediately above,
in full, with a header. There's no need to repeat the header.

3. The line numbers disappeared. By default, the doc viewer omits line numbers when there are fewer than 10 lines of code; it adds line numbers after that. You can turn line numbers

Code snippet from a file

Code-example attributes

Displaying a code fragment

on or off explicitly by setting the linenums attribute.

Sometimes you want to display an example of bad code or bad design.

You should be careful. Readers don't always read carefully and are likely to copy and paste your example of bad code in their own applications. So don't display bad code often.

When you do, set the class to avoid . The code snippet will be framed in bright red to grab the reader's attention.

Here's the markup for an "avoid" example in the Angular Style Guide.

<code-example
 path="styleguide/src/05-03/app/heroes/shared/hero-button/hero-button.component.avoid.ts"
 region="example"
 title="app/heroes/hero-button/hero-button.component.ts">
</code-example>

{@a code-tabs}

Code tabs display code much like code examples do. The added advantage is that they can display multiple code samples within a tabbed interface. Each tab is displayed using code
pane.

linenums : The value can be true , false or a number indicating the starting line number. If not specified, line numbers are enabled only when code for a tab pane has
greater than 10 lines of code.

path - a file in the content/examples folder
title - seen in the header of a tab
linenums - overrides the linenums property at the code-tabs level for this particular pane. The value can be true , false or a number indicating the starting line

number. If not specified, line numbers are enabled only when the number of lines of code are greater than 10.

The next example displays multiple code tabs, each with its own title. It demonstrates control over display of line numbers at both the <code-tabs> and <code-pane> levels.

Here's the markup for that example.

Note how the linenums attribute in the <code-tabs> explicitly disables numbering for all panes. The linenums attribute in the second pane restores line numbering for itself
only.

<code-tabs linenums="false">
 <code-pane
 title="app.component.html"
 path="docs-style-guide/src/app/app.component.html">
 </code-pane>
 <code-pane
 title="app.component.ts"
 path="docs-style-guide/src/app/app.component.ts"
 linenums="true">
 </code-pane>
 <code-pane
 title="app.component.css (heroes)"
 path="docs-style-guide/src/app/app.component.css"
 region="heroes">
 </code-pane>
 <code-pane
 title="package.json (scripts)"
 path="docs-style-guide/package.1.json">
 </code-pane>
</code-tabs>

{@a source-code-markup}

Example of bad code

Code Tabs

Code-tabs attributes

Code-pane attributes

Source code markup

You must add special code snippet markup to sample source code files before they can be displayed by <code-example> and <code-tabs> components.

The sample source code for this page, located in `context/examples/docs-style-guide`, contains examples of every code snippet markup described in this section.

Code snippet markup is always in the form of a comment. Here's the default docregion markup for a TypeScript or JavaScript file:

// #docregion
... some code ...
// #enddocregion

Different file types have different comment syntax so adjust accordingly.

<!-- #docregion -->
... some HTML ...
<!-- #enddocregion -->

/* #docregion */
... some CSS ...
/* #enddocregion */

The doc generation process erases these comments before displaying them in the doc viewer. It also strips them from plunkers and sample code downloads.

Code snippet markup is not supported in JSON files because comments are forbidden in JSON files. See [below](#json-files) for details and workarounds.

The #docregion is the most important kind of code snippet markup.

The <code-example> and <code-tabs> components won't display a source code file unless it has a #docregion.

The #docregion comment begins a code snippet region. Every line of code after that comment belongs in the region until the code fragment processor encounters the end of the file or a
closing #enddocregion.

The `src/main.ts` is a simple example of a file with a single _#docregion_ at the top of the file.

You'll often display multiple snippets from different fragments within the same file. You distinguish among them by giving each fragment its own #docregion name as follows.

// #docregion region-name
... some code ...
// #enddocregion region-name

Remember to refer to this region by name in the region attribute of the <code-example> or <code-pane> as you did in an example above like this:

<code-example
 path="docs-style-guide/src/app/app.module.ts"
 region="class"></code-example>

The #docregion with no name is the default region. Do not set the region attribute when referring to the default #docregion.

You can nest #docregions within #docregions
// #docregion ... some code ... // #docregion inner-region ... more code ... // #enddocregion inner-region ... yet more code ... /// #enddocregion

The src/app/app.module.ts file has a good example of a nested region.

You can combine several fragments from the same file into a single code snippet by defining multiple #docregions with the same region name.

Examine the src/app/app.component.ts file which defines two nested #docregions.

The inner, class-skeleton region appears twice, once to capture the code that opens the class definition and once to capture the code that closes the class definition.

// #docplaster ... // #docregion class, class-skeleton export class AppComponent { // #enddocregion class-skeleton title = 'Authors Style Guide Sample'; heroes = HEROES;
selectedHero: Hero;

#docregion

Named #docregions

Nested #docregions

Combining fragments

onSelect(hero: Hero): void { this.selectedHero = hero; } // #docregion class-skeleton } // #enddocregion class, class-skeleton

Here's are the two corresponding code snippets displayed side-by-side.

Some observations:

The #docplaster at the top is another bit of code snippet markup. It tells the processor how to join the fragments into a single snippet.

In this example, we tell the processor to put the fragments together without anything in between - without any "plaster". Most sample files define this empty plaster.

If we neglected to add, #docplaster , the processor would insert the default plaster - an ellipsis comment - between the fragments. Try removing the #docplaster comment
yourself to see the effect.

One #docregion comment mentions two region names as does an #enddocregion comment. This is a convenient way to start (or stop) multiple regions on the same code
line. You could have put these comments on separate lines and many authors prefer to do so.

Code snippet markup is not supported for JSON files because comments are forbidden in JSON files.

You can display an entire JSON file by referring to it in the src attribute. But you can't display JSON fragments because you can't add #docregion tags to the file.

If the JSON file is too big, you could copy the nodes-of-interest into markdown backticks.

Unfortunately, it's easy to mistakenly create invalid JSON that way. The preferred way is to create a JSON partial file with the fragment you want to display.

You can't test this partial file and you'll never use it in the application. But at least your IDE can confirm that it is syntactically correct.

Here's an example that excerpts certain scripts from package.json into a partial file named package.1.json .

<code-example
 path="docs-style-guide/package.1.json"
 title="package.json (selected scripts)"></code-example>

Many guides tell a story. In that story, the app evolves incrementally, often with simplistic or incomplete code along the way.

To tell that story in code, you'll often need to create partial files or intermediate versions of the final source code file with fragments of code that don't appear in the final app.

Such partial and intermediate files need their own names. Follow the doc sample naming convention. Add a number before the file extension as illustrated here:

package.1.json
app.component.1.ts
app.component.2.ts

You'll find many such files among the samples in the Angular documentation.

Remember to exclude these files from plunkers by listing them in the plnkr.json as illustrated here.

{@a live-examples}

By adding <live-example> to the page you generate links that run sample code in the Plunker live coding environment and download that code to the reader's file system.

Live examples (AKA "plunkers") are defined by one or more plnkr.json files in the root of a code sample folder. Each sample folder usually has a single unnamed definition file, the
default plnkr.json .

You can create additional, named definition files in the form `name.plnkr.json`. See `content/examples/testing` for examples. The schema for a `plnkr.json` hasn't been documented yet
but looking at the `plnkr.json` files in the example folders should tell you most of what you need to know.

Adding <live-example></live-example> to the page generates the two default links.

1. a link to the plunker defined by the default plnkr.json file located in the code sample folder with the same name as the guide page.

2. a link that downloads that sample.

Clicking the first link opens the code sample in a new browser tab in the "embedded plunker" style.

JSON files

Partial file naming

Live examples

You can change the appearance and behavior of the live example with attributes and classes.

Give the live example anchor a custom label and tooltip by setting the title attribute.

<live-example title="Live Example with title"></live-example>

You can achieve the same effect by putting the label between the <live-example> tags:

Live example with content label

<live-example>Live example with content label</live-example>

To link to a plunker in a folder whose name is not the same as the current guide page, set the name attribute to the name of that folder.

Live Example from the Router guide

<live-example name="router">Live Example from the Router guide</live-example>

To link to a plunker defined by a named plnkr.json file, set the plnkr attribute. The following example links to the plunker defined by second.plnkr.json in the current
guide's directory.

<live-example plnkr="second"></live-example>

To skip the download link, add the noDownload attribute.

Just the plunker

<live-example noDownload>Just the plunker</live-example>

To skip the live plunker link and only link to the download, add the downloadOnly attribute.

Download only

<live-example downloadOnly>Download only</live-example>

By default, a live example link opens a plunker in a separate browser tab. You can embed the plunker within the guide page itself by adding the embedded attribute.

For performance reasons, the plunker does not start right away. The reader sees an image instead. Clicking the image starts the sometimes-slow process of launching the embedded
plunker within an iframe on the page.

You usually replace the default plunker image with a custom image that better represents the sample. Store that image in the content/images directory in a folder with a name
matching the corresponding example folder.

Here's an embedded live example for this guide. It has a custom image created from a snapshot of the running app, overlayed with
content/images/plunker/unused/click-to-run.png .

<live-example embedded img="guide/docs-style-guide/docs-style-guide-plunker.png"></live-example>

Every section header tag is also an anchor point. Another guide page could add a link to this section by writing:

Custom label and tooltip

Live example from another guide

Live Example for named plunker

Live Example without download

Live Example with download-only

Embedded live example

Anchors

See the ["Anchors"](guide/docs-style-guide#anchors "Style Guide - Anchors") section for details.

<div class="l-sub-section">

See the ["Anchors"](guide/docs-style-guide#anchors "Style Guide - Anchors") section for details.

</div>

When navigating within the page, you can omit the page URL when specifying the link that scrolls up to the beginning of this section.

... the link that [scrolls up](#anchors "Anchors") to ...

{@a ugly-anchors}

It is often a good idea to lock-in a good anchor name.

Sometimes the section header text makes for an unattractive anchor. This one is pretty bad.

[This one](#ugly-long-section-header-anchors) is pretty bad.

The greater danger is that a future rewording of the header text would break a link to this section.

For these reasons, it is often wise to add a custom anchor explicitly, just above the heading or text to which it applies, using the special {@ name} syntax like this.

{@a ugly-anchors}

Now link to that custom anchor name as you did before.

Now [link to that custom anchor name](#ugly-anchors) as you did before.

Alternatively, you can use the HTML `` tag. If you do, be sure to set the `id` attribute - not the `name` attribute! The docs generator will not convert the `name` to the proper link URL.
```html ## Anchors ```

Alerts draw attention to important points. Alerts should not be used for multi-line content (use callouts insteads) or stacked on top of each other. Note that the content of an alert is
indented to the right by two spaces.

A critical alert.
An important alert.
A helpful, informational alert.

Here is the markup for these alerts. ```html

A critical alert.

An important alert.
A helpful, informational alert.
``` Alerts are meant to grab the user's attention and should be used sparingly. They are not for casual asides or commentary. Use [subsections](#subsections "subsections") for
commentary. ## Callouts Callouts (like alerts) are meant to draw attention to important points. Use a callout when you want a riveting header and multi-line content.
A critical point
Pitchfork hoodie semiotics, roof party pop-up _paleo_ messenger messenger bag cred Carles tousled Truffaut yr. Semiotics viral freegan VHS, Shoreditch disrupt McSweeney's.
Intelligentsia kale chips Vice four dollar toast, Schlitz crucifix
An important point
Pitchfork hoodie semiotics, roof party pop-up _paleo_ messenger bag cred Carles tousled Truffaut yr. Semiotics viral freegan VHS, Shoreditch disrupt McSweeney's. Intelligentsia
kale chips Vice four dollar toast, Schlitz crucifix
A helpful point
Pitchfork hoodie semiotics, roof party pop-up _paleo_ messenger bag cred Carles tousled Truffaut yr. Semiotics viral freegan VHS, Shoreditch disrupt McSweeney's. Intelligentsia
kale chips Vice four dollar toast, Schlitz crucifix

Here is the markup for the first of these callouts. ```html

A critical point

Ugly, long section header anchors

Ugly, long section header anchors

Alerts

Pitchfork hoodie semiotics, roof party pop-up paleo messenger bag cred Carles tousled Truffaut yr. Semiotics viral freegan VHS, Shoreditch disrupt McSweeney's. Intelligentsia kale
chips Vice four dollar toast, Schlitz crucifix

```

Notice that * the callout header text is forced to all upper case. * the callout body can be written in markdown. * a blank line separates the </header>  tag from the markdown content.

Callouts are meant to grab the user's attention. They are not for casual asides. Please use them sparingly.

Trees can represent hierarchical data.

sample-dir
src
app
app.component.ts
app.module.ts
styles.css
tsconfig.json
node_modules ...
package.json

Here is the markup for this file tree.

<div class='filetree'>
    <div class='file'>
        sample-dir
    </div>
    <div class='children'>
        <div class='file'>
          src
        </div>
        <div class='children'>
            <div class='file'>
              app
            </div>
            <div class='children'>
                <div class='file'>
                  app.component.ts
                </div>
                <div class='file'>
                  app.module.ts
                </div>
            </div>
            <div class='file'>
              styles.css
            </div>
            <div class='file'>
              tsconfig.json
            </div>
        </div>
        <div class='file'>
          node_modules ...
        </div>
        <div class='file'>
          package.json
        </div>
    </div>
</div>

Use HTML tables to present tabular data.

Trees

Tables



Framework Task Speed

AngularJS Routing Fast

Angular v2 Routing *Faster*

Angular v4 Routing **Fastest :)**

Here is the markup for this table.

<style>
  td, th {vertical-align: top}
</style>

<table>
  <tr>
    <th>Framework</th>
    <th>Task</th>
    <th>Speed</th>
  </tr>
  <tr>
    <td><code>AngularJS</code></td>
    <td>Routing</td>
    <td>Fast</td>
  </tr>
  <tr>
    <td><code>Angular v2</code></td>
    <td>Routing</td>
    <!-- can use markdown too; remember blank lines -->
    <td>

      *Faster*

    </td>
  </tr>
  <tr>
    <td><code>Angular v4</code></td>
    <td>Routing</td>
    <td>

      **Fastest :)**

    </td>
  </tr>
</table>

Store images in the content/images  directory in a folder with the same URL as the guide page. Images for this "Authors Style Guide" page belong in the
content/images/guide/docs-style-guide  folder.

Angular doc generation copies these image folders to the runtime location, generated/images . Set the image src  attribute to begin in that directory.

Here's the src  attribute for the "flying hero" image belonging to this page.
src="/Users/nblavoie/Documents/projets/angular/aio/content/images/guide/docs-style-guide/flying-hero.png"

Do not use the markdown image syntax, ![...](...).

Images should be specified in an <img>  tag.

For accessibility, always set the alt  attribute with a meaningful description of the image.

You should nest the <img>  tag within a <figure>  tag, which styles the image within a drop-shadow frame. You'll need the editor's permission to skip the <figure>  tag.

Here's a conforming example

Images

Image location

Use the HTML <img> tag



<figure>
  <img src="/Users/nblavoie/Documents/projets/angular/aio/content/images/guide/docs-style-guide/flying-hero.png"
       alt="flying hero">
</figure>

Note that the HTML image element does not have a closing tag.

The doc generator reads the image dimensions from the file and adds width and height attributes to the img  tag automatically. If you want to control the size of the image, supply your
own width and height attributes.

Here's the "flying hero" at a more reasonable scale.

Image dimensions



<figure>
 <img src="/Users/nblavoie/Documents/projets/angular/aio/content/images/guide/docs-style-guide/flying-hero.png"
   alt="flying Angular hero"
   width="200">
</figure>

Wide images can be a problem. Most browsers try to rescale the image but wide images may overflow the document in certain viewports.

Do not set a width greater than 700px. If you wish to display a larger image, provide a link to the actual image that the user can click on to see the full size image separately as in this
example of source-map-explorer  output from the "Ahead-of-time Compilation" guide:

Large image files can be slow to load, harming the user experience. Always compress the image. Consider using an image compression web site such as tinypng.

You can float the image to the left or right of text by applying the class="left" or class="right" attributes respectively.

This text wraps around to the right of the floating "flying hero" image.

Headings and code-examples automatically clear a floating image. If you need to force a piece of text to clear a floating image, add <br class="clear">  where the text should
break.

The markup for the above example is:

<img src="/Users/nblavoie/Documents/projets/angular/aio/content/images/guide/docs-style-guide/flying-hero.png"
   alt="flying Angular hero"
   width="200"
   class="left">

This text wraps around to the right of the floating "flying hero" image.

Headings and code-examples automatically clear a floating image. If you need to force a piece of text to clear a floating image, add `<br class=
"clear">` where the text should break.

<br class="clear">

Note that you generally don't wrap a floating image in a <figure>  element.

If you have a floating image inside an alert, callout, or a subsection, it is a good idea to apply the clear-fix  class to the div  to ensure that the image doesn't overflow its
container. For example:

 A subsection with **markdown** formatted text.

Image compression

Floating images

Floating within a subsection



<div class="l-sub-section clear-fix">

  <img src="/Users/nblavoie/Documents/projets/angular/aio/content/images/guide/docs-style-guide/flying-hero.png"
    alt="flying Angular hero"
    width="100"
    class="right">

  A subsection with **markdown** formatted text.

</div>



Component templates are not always fixed. An application may need to load new components at runtime.

This cookbook shows you how to use ComponentFactoryResolver  to add components dynamically.

See the of the code in this cookbook.

{@a dynamic-loading}

The following example shows how to build a dynamic ad banner.

The hero agency is planning an ad campaign with several different ads cycling through the banner. New ad
components are added frequently by several different teams. This makes it impractical to use a template with a
static component structure.

Instead, you need a way to load a new component without a fixed reference to the component in the ad
banner's template.

Angular comes with its own API for loading components dynamically.

{@a directive}

Before you can add components you have to define an anchor point to tell Angular where to insert
components.

The ad banner uses a helper directive called AdDirective  to mark valid insertion points in the template.

AdDirective  injects ViewContainerRef  to gain access to the view container of the element that will
host the dynamically added component.

In the @Directive  decorator, notice the selector name, ad-host ; that's what you use to apply the
directive to the element. The next section shows you how.

{@a loading-components}

Dynamic Component Loader

Dynamic component loading

The anchor directive



Most of the ad banner implementation is in ad-banner.component.ts . To keep things simple in this
example, the HTML is in the @Component  decorator's template  property as a template string.

The <ng-template>  element is where you apply the directive you just made. To apply the
AdDirective , recall the selector from ad.directive.ts , ad-host . Apply that to
<ng-template>  without the square brackets. Now Angular knows where to dynamically load components.

The <ng-template>  element is a good choice for dynamic components because it doesn't render any
additional output.

{@a resolving-components}

Take a closer look at the methods in ad-banner.component.ts .

AdBannerComponent  takes an array of AdItem  objects as input, which ultimately comes from
AdService . AdItem  objects specify the type of component to load and any data to bind to the

component. AdService  returns the actual ads making up the ad campaign.

Passing an array of components to AdBannerComponent  allows for a dynamic list of ads without static
elements in the template.

With its getAds()  method, AdBannerComponent  cycles through the array of AdItems  and loads a
new component every 3 seconds by calling loadComponent() .

The loadComponent()  method is doing a lot of the heavy lifting here. Take it step by step. First, it picks an
ad.

**How _loadComponent()_ chooses an ad** The `loadComponent()` method chooses an ad using some math.
First, it sets the `currentAddIndex` by taking whatever it currently is plus one, dividing that by the length of the
`AdItem` array, and using the _remainder_ as the new `currentAddIndex` value. Then, it uses that value to
select an `adItem` from the array.

After loadComponent()  selects an ad, it uses ComponentFactoryResolver  to resolve a
ComponentFactory  for each specific component. The ComponentFactory  then creates an instance of

each component.

Next, you're targeting the viewContainerRef  that exists on this specific instance of the component. How

Loading components

Resolving components



do you know it's this specific instance? Because it's referring to adHost  and adHost  is the directive you
set up earlier to tell Angular where to insert dynamic components.

As you may recall, AdDirective  injects ViewContainerRef  into its constructor. This is how the
directive accesses the element that you want to use to host the dynamic component.

To add the component to the template, you call createComponent()  on ViewContainerRef .

The createComponent()  method returns a reference to the loaded component. Use that reference to
interact with the component by assigning to its properties or calling its methods.

{@a selector-references}

Generally, the Angular compiler generates a ComponentFactory  for any component referenced in a
template. However, there are no selector references in the templates for dynamically loaded components since
they load at runtime.

To ensure that the compiler still generates a factory, add dynamically loaded components to the NgModule 's
entryComponents  array:

{@a common-interface}

In the ad banner, all components implement a common AdComponent  interface to standardize the API for
passing data to the components.

Here are two sample components and the AdComponent  interface for reference:

{@a final-ad-baner}

The final ad banner looks like this:

Selector references

The AdComponent interface

Final ad banner



See the .



{@a top}

Building handcrafted forms can be costly and time-consuming, especially if you need a great number of them,
they're similar to each other, and they change frequently to meet rapidly changing business and regulatory
requirements.

It may be more economical to create the forms dynamically, based on metadata that describes the business
object model.

This cookbook shows you how to use formGroup  to dynamically render a simple form with different control
types and validation. It's a primitive start. It might evolve to support a much richer variety of questions, more
graceful rendering, and superior user experience. All such greatness has humble beginnings.

The example in this cookbook is a dynamic form to build an online application experience for heroes seeking
employment. The agency is constantly tinkering with the application process. You can create the forms on the
fly without changing the application code. {@a toc}

See the .

{@a bootstrap}

Start by creating an NgModule  called AppModule .

This cookbook uses reactive forms.

Reactive forms belongs to a different NgModule  called ReactiveFormsModule , so in order to access
any reactive forms directives, you have to import ReactiveFormsModule  from the @angular/forms
library.

Bootstrap the AppModule  in main.ts .

{@a object-model}

Dynamic Forms

Bootstrap

Question model



The next step is to define an object model that can describe all scenarios needed by the form functionality. The
hero application process involves a form with a lot of questions. The question is the most fundamental object in
the model.

The following QuestionBase  is a fundamental question class.

From this base you can derive two new classes in TextboxQuestion  and DropdownQuestion  that
represent textbox and dropdown questions. The idea is that the form will be bound to specific question types
and render the appropriate controls dynamically.

TextboxQuestion  supports multiple HTML5 types such as text, email, and url via the type  property.

DropdownQuestion  presents a list of choices in a select box.

Next is QuestionControlService , a simple service for transforming the questions to a FormGroup . In
a nutshell, the form group consumes the metadata from the question model and allows you to specify default
values and validation rules.

{@a form-component}

Now that you have defined the complete model you are ready to create components to represent the dynamic
form.

DynamicFormComponent  is the entry point and the main container for the form.

It presents a list of questions, each bound to a <df-question>  component element. The
<df-question>  tag matches the DynamicFormQuestionComponent , the component responsible for

rendering the details of each individual question based on values in the data-bound question object.

Notice this component can present any type of question in your model. You only have two types of questions at
this point but you can imagine many more. The ngSwitch  determines which type of question to display.

In both components you're relying on Angular's formGroup to connect the template HTML to the underlying
control objects, populated from the question model with display and validation rules.

formControlName  and formGroup  are directives defined in ReactiveFormsModule . The
templates can access these directives directly since you imported ReactiveFormsModule  from
AppModule . {@a questionnaire-data}

Question form components



DynamicFormComponent  expects the list of questions in the form of an array bound to
@Input() questions .

The set of questions you've defined for the job application is returned from the QuestionService . In a real
app you'd retrieve these questions from storage.

The key point is that you control the hero job application questions entirely through the objects returned from
QuestionService . Questionnaire maintenance is a simple matter of adding, updating, and removing

objects from the questions  array.

Finally, display an instance of the form in the AppComponent  shell.

{@a dynamic-template}

Although in this example you're modelling a job application for heroes, there are no references to any specific
hero question outside the objects returned by QuestionService .

This is very important since it allows you to repurpose the components for any type of survey as long as it's
compatible with the question object model. The key is the dynamic data binding of metadata used to render the
form without making any hardcoded assumptions about specific questions. In addition to control metadata, you
are also adding validation dynamically.

The Save button is disabled until the form is in a valid state. When the form is valid, you can click Save and the
app renders the current form values as JSON. This proves that any user input is bound back to the data model.
Saving and retrieving the data is an exercise for another time.

The final form looks like this:

Questionnaire data

Dynamic Template



Back to top



Improve overall data quality by validating user input for accuracy and completeness.

This page shows how to validate user input in the UI and display useful validation messages using both
reactive and template-driven forms. It assumes some basic knowledge of the two forms modules.

If you're new to forms, start by reviewing the [Forms](guide/forms) and [Reactive Forms](guide/reactive-forms)
guides.

To add validation to a template-driven form, you add the same validation attributes as you would with native
HTML form validation. Angular uses directives to match these attributes with validator functions in the
framework.

Every time the value of a form control changes, Angular runs validation and generates either a list of validation
errors, which results in an INVALID status, or null, which results in a VALID status.

You can then inspect the control's state by exporting ngModel  to a local template variable. The following
example exports NgModel  into a variable called name :

Note the following:

The <input>  element carries the HTML validation attributes: required  and minlength . It also
carries a custom validator directive, forbiddenName . For more information, see Custom validators
section.

#name="ngModel"  exports NgModel  into a local variable called name . NgModel  mirrors many
of the properties of its underlying FormControl  instance, so you can use this in the template to check
for control states such as valid  and dirty . For a full list of control properties, see the
AbstractControl API reference.

The *ngIf  on the <div>  element reveals a set of nested message divs  but only if the name  is
invalid and the control is either dirty  or touched .

Each nested <div>  can present a custom message for one of the possible validation errors. There are
messages for required , minlength , and forbiddenName .

Form Validation

Template-driven validation



#### Why check _dirty_ and _touched_? You may not want your application to display errors before the user
has a chance to edit the form. The checks for `dirty` and `touched` prevent errors from showing until the user
does one of two things: changes the value, turning the control dirty; or blurs the form control element, setting
the control to touched.

In a reactive form, the source of truth is the component class. Instead of adding validators through attributes in
the template, you add validator functions directly to the form control model in the component class. Angular
then calls these functions whenever the value of the control changes.

There are two types of validator functions: sync validators and async validators.

Sync validators: functions that take a control instance and immediately return either a set of validation
errors or null . You can pass these in as the second argument when you instantiate a
FormControl .

Async validators: functions that take a control instance and return a Promise or Observable that later
emits a set of validation errors or null . You can pass these in as the third argument when you
instantiate a FormControl .

Note: for performance reasons, Angular only runs async validators if all sync validators pass. Each must
complete before errors are set.

You can choose to write your own validator functions, or you can use some of Angular's built-in validators.

The same built-in validators that are available as attributes in template-driven forms, such as required  and
minlength , are all available to use as functions from the Validators  class. For a full list of built-in

validators, see the Validators API reference.

To update the hero form to be a reactive form, you can use some of the same built-in validators—this time, in
function form. See below:

{@a reactive-component-class}

Note that:

Reactive form validation

Validator functions

Built-in validators



The name control sets up two built-in validators— Validators.required  and
Validators.minLength(4) —and one custom validator, forbiddenNameValidator . For more

details see the Custom validators section in this guide.
As these validators are all sync validators, you pass them in as the second argument.
Support multiple validators by passing the functions in as an array.
This example adds a few getter methods. In a reactive form, you can always access any form control
through the get  method on its parent group, but sometimes it's useful to define getters as shorthands
for the template.

If you look at the template for the name input again, it is fairly similar to the template-driven example.

Key takeaways:

The form no longer exports any directives, and instead uses the name  getter defined in the component
class.
The required  attribute is still present. While it's not necessary for validation purposes, you may want
to keep it in your template for CSS styling or accessibility reasons.

Since the built-in validators won't always match the exact use case of your application, sometimes you'll want
to create a custom validator.

Consider the forbiddenNameValidator  function from previous examples in this guide. Here's what the
definition of that function looks like:

The function is actually a factory that takes a regular expression to detect a specific forbidden name and
returns a validator function.

In this sample, the forbidden name is "bob", so the validator will reject any hero name containing "bob".
Elsewhere it could reject "alice" or any name that the configuring regular expression matches.

The forbiddenNameValidator  factory returns the configured validator function. That function takes an
Angular control object and returns either null if the control value is valid or a validation error object. The
validation error object typically has a property whose name is the validation key, 'forbiddenName' , and
whose value is an arbitrary dictionary of values that you could insert into an error message, {name} .

Custom async validators are similar to sync validators, but they must instead return a Promise or Observable
that later emits null or a validation error object. In the case of an Observable, the Observable must complete, at
which point the form uses the last value emitted for validation.

Custom validators



In reactive forms, custom validators are fairly simple to add. All you have to do is pass the function directly to
the FormControl .

In template-driven forms, you don't have direct access to the FormControl  instance, so you can't pass the
validator in like you can for reactive forms. Instead, you need to add a directive to the template.

The corresponding ForbiddenValidatorDirective  serves as a wrapper around the
forbiddenNameValidator .

Angular recognizes the directive's role in the validation process because the directive registers itself with the
NG_VALIDATORS  provider, a provider with an extensible collection of validators.

The directive class then implements the Validator  interface, so that it can easily integrate with Angular
forms. Here is the rest of the directive to help you get an idea of how it all comes together:

Once the ForbiddenValidatorDirective  is ready, you can simply add its selector,
forbiddenName , to any input element to activate it. For example:

You may have noticed that the custom validation directive is instantiated with `useExisting` rather than
`useClass`. The registered validator must be _this instance_ of the `ForbiddenValidatorDirective`—the instance
in the form with its `forbiddenName` property bound to “bob". If you were to replace `useExisting` with
`useClass`, then you’d be registering a new class instance, one that doesn’t have a `forbiddenName`.

Like in AngularJS, Angular automatically mirrors many control properties onto the form control element as CSS
classes. You can use these classes to style form control elements according to the state of the form. The
following classes are currently supported:

.ng-valid

.ng-invalid

.ng-pending

.ng-pristine

.ng-dirty

.ng-untouched

.ng-touched

Adding to reactive forms

Adding to template-driven forms

Control status CSS classes



The hero form uses the .ng-valid  and .ng-invalid  classes to set the color of each form control's
border.

You can run the to see the complete reactive and template-driven example code.



Forms are the mainstay of business applications. You use forms to log in, submit a help request, place an
order, book a flight, schedule a meeting, and perform countless other data-entry tasks.

In developing a form, it's important to create a data-entry experience that guides the user efficiently and
effectively through the workflow.

Developing forms requires design skills (which are out of scope for this page), as well as framework support for
two-way data binding, change tracking, validation, and error handling, which you'll learn about on this page.

This page shows you how to build a simple form from scratch. Along the way you'll learn how to:

Build an Angular form with a component and template.
Use ngModel  to create two-way data bindings for reading and writing input-control values.
Track state changes and the validity of form controls.
Provide visual feedback using special CSS classes that track the state of the controls.
Display validation errors to users and enable/disable form controls.
Share information across HTML elements using template reference variables.

You can run the in Plunker and download the code from there.

{@a template-driven}

You can build forms by writing templates in the Angular template syntax with the form-specific directives and
techniques described in this page.

You can also use a reactive (or model-driven) approach to build forms. However, this page focuses on
template-driven forms.

You can build almost any form with an Angular template—login forms, contact forms, and pretty much any
business form. You can lay out the controls creatively, bind them to data, specify validation rules and display
validation errors, conditionally enable or disable specific controls, trigger built-in visual feedback, and much
more.

Angular makes the process easy by handling many of the repetitive, boilerplate tasks you'd otherwise wrestle
with yourself.

Forms

Template-driven forms



You'll learn to build a template-driven form that looks like this:

The Hero Employment Agency uses this form to maintain personal information about heroes. Every hero needs
a job. It's the company mission to match the right hero with the right crisis.

Two of the three fields on this form are required. Required fields have a green bar on the left to make them
easy to spot.

If you delete the hero name, the form displays a validation error in an attention-grabbing style:



Note that the Submit button is disabled, and the "required" bar to the left of the input control changes from
green to red.

You can customize the colors and location of the "required" bar with standard CSS.

You'll build this form in small steps:

1. Create the Hero  model class.
2. Create the component that controls the form.
3. Create a template with the initial form layout.
4. Bind data properties to each form control using the ngModel  two-way data-binding syntax.
5. Add a name  attribute to each form-input control.
6. Add custom CSS to provide visual feedback.
7. Show and hide validation-error messages.
8. Handle form submission with ngSubmit.
9. Disable the form’s Submit button until the form is valid.

Create a new project named angular-forms :

Setup



ng new angular-forms

As users enter form data, you'll capture their changes and update an instance of a model. You can't lay out the
form until you know what the model looks like.

A model can be as simple as a "property bag" that holds facts about a thing of application importance. That
describes well the Hero  class with its three required fields ( id , name , power ) and one optional field
( alterEgo ).

Using the Angular CLI, generate a new class named Hero :

ng generate class Hero

With this content:

It's an anemic model with few requirements and no behavior. Perfect for the demo.

The TypeScript compiler generates a public field for each public  constructor parameter and automatically
assigns the parameter’s value to that field when you create heroes.

The alterEgo  is optional, so the constructor lets you omit it; note the question mark (?) in alterEgo? .

You can create a new hero like this:

An Angular form has two parts: an HTML-based template and a component class to handle data and user
interactions programmatically. Begin with the class because it states, in brief, what the hero editor can do.

Using the Angular CLI, generate a new component named HeroForm :

ng generate component HeroForm

With this content:

There’s nothing special about this component, nothing form-specific, nothing to distinguish it from any
component you've written before.

Understanding this component requires only the Angular concepts covered in previous pages.

The code imports the Angular core library and the Hero  model you just created.

Create the Hero model class

Create a form component



The @Component  selector value of "hero-form" means you can drop this form in a parent template with
a <hero-form>  tag.
The templateUrl  property points to a separate file for the template HTML.
You defined dummy data for model  and powers , as befits a demo.

Down the road, you can inject a data service to get and save real data or perhaps expose these properties as
inputs and outputs (see Input and output properties on the Template Syntax page) for binding to a parent
component. This is not a concern now and these future changes won't affect the form.

You added a diagnostic  property to return a JSON representation of the model. It'll help you see
what you're doing during development; you've left yourself a cleanup note to discard it later.

app.module.ts  defines the application's root module. In it you identify the external modules you'll use in
the application and declare the components that belong to this module, such as the HeroFormComponent .

Because template-driven forms are in their own module, you need to add the FormsModule  to the array of
imports  for the application module before you can use forms.

Update it with the following:

There are two changes: 1. You import `FormsModule`. 1. You add the `FormsModule` to the list of `imports`
defined in the `@NgModule` decorator. This gives the application access to all of the template-driven forms
features, including `ngModel`.
If a component, directive, or pipe belongs to a module in the `imports` array, _don't_ re-declare it in the
`declarations` array. If you wrote it and it should belong to this module, _do_  declare it in the `declarations`
array.

AppComponent  is the application's root component. It will host the new HeroFormComponent .

Replace the contents of its template with the following:

There are only two changes. The `template` is simply the new element tag identified by the component's
`selector` property. This displays the hero form when the application component is loaded. Don't forget to
remove the `name` field from the class body as well.

Revise app.module.ts

Revise app.component.html

Create an initial HTML form template



Update the template file with the following contents:

The language is simply HTML5. You're presenting two of the Hero  fields, name  and alterEgo , and
opening them up for user input in input boxes.

The Name <input>  control has the HTML5 required  attribute; the Alter Ego <input>  control does
not because alterEgo  is optional.

You added a Submit button at the bottom with some classes on it for styling.

You're not using Angular yet. There are no bindings or extra directives, just layout.

In template driven forms, if you've imported `FormsModule`, you don't have to do anything to the `
` tag in order to make use of `FormsModule`. Continue on to see how this works.

The container , form-group , form-control , and btn  classes come from Twitter Bootstrap.
These classes are purely cosmetic. Bootstrap gives the form a little style.

Angular forms don't require a style library
Angular makes no use of the `container`, `form-group`, `form-control`, and `btn` classes or the styles of any
external library. Angular apps can use any CSS library or none at all.

To add the stylesheet, open styles.css  and add the following import line at the top:

The hero must choose one superpower from a fixed list of agency-approved powers. You maintain that list
internally (in HeroFormComponent ).

You'll add a select  to the form and bind the options to the powers  list using ngFor , a technique seen
previously in the Displaying Data page.

Add the following HTML immediately below the Alter Ego group:

This code repeats the <option>  tag for each power in the list of powers. The pow  template input variable
is a different power in each iteration; you display its name using the interpolation syntax.

{@a ngModel}

Running the app right now would be disappointing.

Add powers with *ngFor

Two-way data binding with ngModel



You don't see hero data because you're not binding to the Hero  yet. You know how to do that from earlier
pages. Displaying Data teaches property binding. User Input shows how to listen for DOM events with an event
binding and how to update a component property with the displayed value.

Now you need to display, listen, and extract at the same time.

You could use the techniques you already know, but instead you'll use the new [(ngModel)]  syntax, which
makes binding the form to the model easy.

Find the <input>  tag for Name and update it like this:

You added a diagnostic interpolation after the input tag so you can see what you're doing. You left yourself a
note to throw it away when you're done.

Focus on the binding syntax: [(ngModel)]="..." .

You need one more addition to display the data. Declare a template variable for the form. Update the
<form>  tag with #heroForm="ngForm"  as follows:

The variable heroForm  is now a reference to the NgForm  directive that governs the form as a whole.

{@a ngForm} ### The _NgForm_ directive What `NgForm` directive? You didn't add an [NgForm]
(api/forms/NgForm) directive. Angular did. Angular automatically creates and attaches an `NgForm` directive to
the `` tag. The `NgForm` directive supplements the `form` element with additional features. It holds the controls
you created for the elements with an `ngModel` directive and `name` attribute, and monitors their properties,
including their validity. It also has its own `valid` property which is true only *if every contained control* is valid.



If you ran the app now and started typing in the Name input box, adding and deleting characters, you'd see
them appear and disappear from the interpolated text. At some point it might look like this:

The diagnostic is evidence that values really are flowing from the input box to the model and back again.

That's *two-way data binding*. For more information, see [Two-way binding with NgModel](guide/template-
syntax#ngModel) on the the [Template Syntax](guide/template-syntax) page.

Notice that you also added a name  attribute to the <input>  tag and set it to "name", which makes sense
for the hero's name. Any unique value will do, but using a descriptive name is helpful. Defining a name

attribute is a requirement when using [(ngModel)]  in combination with a form.

Internally, Angular creates `FormControl` instances and registers them with an `NgForm` directive that Angular
attached to the `` tag. Each `FormControl` is registered under the name you assigned to the `name` attribute.
Read more in the previous section, [The NgForm directive](guide/forms#ngForm).

Add similar [(ngModel)]  bindings and name  attributes to Alter Ego and Hero Power. You'll ditch the
input box binding message and add a new binding (at the top) to the component's diagnostic  property.
Then you can confirm that two-way data binding works for the entire hero model.

After revision, the core of the form should look like this:

* Each input element has an `id` property that is used by the `label` element's `for` attribute to match the label
to its input control. * Each input element has a `name` property that is required by Angular forms to register the
control with the form.

If you run the app now and change every hero model property, the form might display like this:



The diagnostic near the top of the form confirms that all of your changes are reflected in the model.

Delete the {{diagnostic}}  binding at the top as it has served its purpose.

Using ngModel  in a form gives you more than just two-way data binding. It also tells you if the user touched
the control, if the value changed, or if the value became invalid.

The NgModel directive doesn't just track state; it updates the control with special Angular CSS classes that
reflect the state. You can leverage those class names to change the appearance of the control.

State Class if true Class if false

The control has been visited. ng-touched ng-untouched

The control's value has changed. ng-dirty ng-pristine

The control's value is valid. ng-valid ng-invalid

Temporarily add a template reference variable named spy  to the Name <input>  tag and use it to display
the input's CSS classes.

Track control state and validity with ngModel



Now run the app and look at the Name input box. Follow these steps precisely:

1. Look but don't touch.
2. Click inside the name box, then click outside it.
3. Add slashes to the end of the name.
4. Erase the name.

The actions and effects are as follows:

You should see the following transitions and class names:

The ng-valid / ng-invalid  pair is the most interesting, because you want to send a strong visual signal
when the values are invalid. You also want to mark required fields. To create such visual feedback, add
definitions for the ng-*  CSS classes.

Delete the #spy  template reference variable and the TODO  as they have served their purpose.

You can mark required fields and invalid data at the same time with a colored bar on the left of the input box:

Add custom CSS for visual feedback



You achieve this effect by adding these class definitions to a new forms.css  file that you add to the project
as a sibling to index.html :

Update the <head>  of index.html  to include this style sheet:

You can improve the form. The Name input box is required and clearing it turns the bar red. That says
something is wrong but the user doesn't know what is wrong or what to do about it. Leverage the control's state
to reveal a helpful message.

When the user deletes the name, the form should look like this:

To achieve this effect, extend the <input>  tag with the following:

A template reference variable.
The "is required" message in a nearby <div> , which you'll display only if the control is invalid.

Here's an example of an error message added to the name input box:

You need a template reference variable to access the input box's Angular control from within the template.
Here you created a variable called name  and gave it the value "ngModel".

Why "ngModel"? A directive's [exportAs](api/core/Directive) property tells Angular how to link the reference
variable to the directive. You set `name` to `ngModel` because the `ngModel` directive's `exportAs` property
happens to be "ngModel".

Show and hide validation error messages



You control visibility of the name error message by binding properties of the name  control to the message
<div>  element's hidden  property.

In this example, you hide the message when the control is valid or pristine; "pristine" means the user hasn't
changed the value since it was displayed in this form.

This user experience is the developer's choice. Some developers want the message to display at all times. If
you ignore the pristine  state, you would hide the message only when the value is valid. If you arrive in
this component with a new (blank) hero or an invalid hero, you'll see the error message immediately, before
you've done anything.

Some developers want the message to display only when the user makes an invalid change. Hiding the
message while the control is "pristine" achieves that goal. You'll see the significance of this choice when you
add a new hero to the form.

The hero Alter Ego is optional so you can leave that be.

Hero Power selection is required. You can add the same kind of error handling to the <select>  if you want,
but it's not imperative because the selection box already constrains the power to valid values.

Now you'll add a new hero in this form. Place a New Hero button at the bottom of the form and bind its click
event to a newHero  component method.

Run the application again, click the New Hero button, and the form clears. The required bars to the left of the
input box are red, indicating invalid name  and power  properties. That's understandable as these are
required fields. The error messages are hidden because the form is pristine; you haven't changed anything yet.

Enter a name and click New Hero again. The app displays a Name is required error message. You don't want
error messages when you create a new (empty) hero. Why are you getting one now?

Inspecting the element in the browser tools reveals that the name input box is no longer pristine. The form
remembers that you entered a name before clicking New Hero. Replacing the hero object did not restore the
pristine state of the form controls.

You have to clear all of the flags imperatively, which you can do by calling the form's reset()  method after
calling the newHero()  method.

Now clicking "New Hero" resets both the form and its control flags.

The user should be able to submit this form after filling it in. The Submit button at the bottom of the form does

Submit the form with ngSubmit



nothing on its own, but it will trigger a form submit because of its type ( type="submit" ).

A "form submit" is useless at the moment. To make it useful, bind the form's ngSubmit  event property to the
hero form component's onSubmit()  method:

You'd already defined a template reference variable, #heroForm , and initialized it with the value "ngForm".
Now, use that variable to access the form with the Submit button.

You'll bind the form's overall validity via the heroForm  variable to the button's disabled  property using
an event binding. Here's the code:

If you run the application now, you find that the button is enabled—although it doesn't do anything useful yet.

Now if you delete the Name, you violate the "required" rule, which is duly noted in the error message. The
Submit button is also disabled.

Not impressed? Think about it for a moment. What would you have to do to wire the button's enable/disabled
state to the form's validity without Angular's help?

For you, it was as simple as this:

1. Define a template reference variable on the (enhanced) form element.
2. Refer to that variable in a button many lines away.

Submitting the form isn't terribly dramatic at the moment.

An unsurprising observation for a demo. To be honest, jazzing it up won't teach you anything new about forms.
But this is an opportunity to exercise some of your newly won binding skills. If you aren't interested, skip to this
page's conclusion.

For a more strikingly visual effect, hide the data entry area and display something else.

Wrap the form in a <div>  and bind its hidden  property to the HeroFormComponent.submitted

property.

The main form is visible from the start because the submitted  property is false until you submit the form,
as this fragment from the HeroFormComponent  shows:

When you click the Submit button, the submitted  flag becomes true and the form disappears as planned.

Now the app needs to show something else while the form is in the submitted state. Add the following HTML

Toggle two form regions (extra credit)



below the <div>  wrapper you just wrote:

There's the hero again, displayed read-only with interpolation bindings. This <div>  appears only while the
component is in the submitted state.

The HTML includes an Edit button whose click event is bound to an expression that clears the submitted

flag.

When you click the Edit button, this block disappears and the editable form reappears.

The Angular form discussed in this page takes advantage of the following framework features to provide
support for data modification, validation, and more:

An Angular HTML form template.
A form component class with a @Component  decorator.
Handling form submission by binding to the NgForm.ngSubmit  event property.
Template-reference variables such as #heroForm  and #name .
[(ngModel)]  syntax for two-way data binding.

The use of name  attributes for validation and form-element change tracking.
The reference variable’s valid  property on input controls to check if a control is valid and show/hide
error messages.
Controlling the Submit button's enabled state by binding to NgForm  validity.
Custom CSS classes that provide visual feedback to users about invalid controls.

Here’s the code for the final version of the application:

Summary



Angular has its own vocabulary. Most Angular terms are common English words with a specific meaning within
the Angular system.

This glossary lists the most prominent terms and a few less familiar ones that have unusual or unexpected
definitions.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

{@a A} {@a aot}

You can compile Angular applications at build time. By compiling your application using the compiler-cli, ngc ,
you can bootstrap directly to a module factory, meaning you don't need to include the Angular compiler in your
JavaScript bundle. Ahead-of-time compiled applications also benefit from decreased load time and increased
performance.

In practice, a synonym for Decoration.

{@a attribute-directive}

{@a attribute-directives}

A category of directive that can listen to and modify the behavior of other HTML elements, attributes,
properties, and components. They are usually represented as HTML attributes, hence the name.

For example, you can use the ngClass  directive to add and remove CSS class names.

Learn about them in the Attribute Directives guide.

{@a B}

Angular Glossary

Ahead-of-time (AOT) compilation

Annotation

Attribute directives



A way to roll up exports from several ES2015 modules into a single convenient ES2015 module. The barrel
itself is an ES2015 module file that re-exports selected exports of other ES2015 modules.

For example, imagine three ES2015 modules in a heroes  folder:

// heroes/hero.component.ts export class HeroComponent {}

// heroes/hero.model.ts export class Hero {}

// heroes/hero.service.ts export class HeroService {}

Without a barrel, a consumer needs three import statements:

import { HeroComponent } from '../heroes/hero.component.ts'; import { Hero } from '../heroes/hero.model.ts';
import { HeroService } from '../heroes/hero.service.ts';

You can add a barrel to the heroes  folder (called index , by convention) that exports all of these items:

export * from './hero.model.ts'; // re-export all of its exports export * from './hero.service.ts'; // re-export all of its
exports export { HeroComponent } from './hero.component.ts'; // re-export the named thing

Now a consumer can import what it needs from the barrel.

import { Hero, HeroService } from '../heroes'; // index is implied

The Angular scoped packages each have a barrel named index .

You can often achieve the same result using [NgModules](guide/glossary#ngmodule) instead.

Usually refers to data binding and the act of binding an HTML object property to a data object property.

Sometimes refers to a dependency-injection binding between a "token"—also referred to as a "key"—and a
dependency provider.

You launch an Angular application by "bootstrapping" it using the application root NgModule (`AppModule`).
Bootstrapping identifies an application's top level "root" [component](guide/glossary#component), which is the

Barrel

Binding

Bootstrap



first component that is loaded for the application. You can bootstrap multiple apps in the same `index.html`,
each app with its own top-level root. {@a C} ## camelCase The practice of writing compound words or phrases
such that each word or abbreviation begins with a capital letter _except the first letter, which is lowercase_.
Function, property, and method names are typically spelled in camelCase. For example, `square`, `firstName`,
and `getHeroes`. Notice that `square` is an example of how you write a single word in camelCase. camelCase
is also known as *lower camel case* to distinguish it from *upper camel case*, or [PascalCase]
(guide/glossary#pascalcase). In Angular documentation, "camelCase" always means *lower camel case*. ##
CLI The Angular CLI is a `command line interface` tool that can create a project, add files, and perform a
variety of ongoing development tasks such as testing, bundling, and deployment. Learn more in the [Getting
Started](guide/quickstart) guide. {@a component} ## Component An Angular class responsible for exposing
data to a [view](guide/glossary#view) and handling most of the view’s display and user-interaction logic. The
*component* is one of the most important building blocks in the Angular system. It is, in fact, an Angular
[directive](guide/glossary#directive) with a companion [template](guide/glossary#template). Apply the
`@Component` [decorator](guide/glossary#decorator) to the component class, thereby attaching to the class
the essential component metadata that Angular needs to create a component instance and render the
component with its template as a view. Those familiar with "MVC" and "MVVM" patterns will recognize the
component in the role of "controller" or "view model". {@a D} ## dash-case The practice of writing compound
words or phrases such that each word is separated by a dash or hyphen (`-`). This form is also known as
kebab-case. [Directive](guide/glossary#directive) selectors (like `my-app`) and the root of filenames (such as
`hero-list.component.ts`) are often spelled in dash-case. ## Data binding Applications display data values to a
user and respond to user actions (such as clicks, touches, and keystrokes). In data binding, you declare the
relationship between an HTML widget and data source and let the framework handle the details. Data binding
is an alternative to manually pushing application data values into HTML, attaching event listeners, pulling
changed values from the screen, and updating application data values. Angular has a rich data-binding
framework with a variety of data-binding operations and supporting declaration syntax. Read about the
following forms of binding in the [Template Syntax](guide/template-syntax) page: * [Interpolation]
(guide/template-syntax#interpolation). * [Property binding](guide/template-syntax#property-binding). * [Event
binding](guide/template-syntax#event-binding). * [Attribute binding](guide/template-syntax#attribute-binding). *
[Class binding](guide/template-syntax#class-binding). * [Style binding](guide/template-syntax#style-binding). *
[Two-way data binding with ngModel](guide/template-syntax#ngModel). {@a decorator} {@a decoration} ##
Decorator | decoration A *function* that adds metadata to a class, its members (properties, methods) and
function arguments. Decorators are an experimental (stage 2), JavaScript language [feature]
(https://github.com/wycats/javascript-decorators). TypeScript adds support for decorators. To apply a decorator,
position it immediately above or to the left of the item it decorates. Angular has its own set of decorators to help
it interoperate with your application parts. The following example is a `@Component` decorator that identifies a
class as an Angular [component](guide/glossary#component) and an `@Input` decorator applied to the `name`
property of that component. The elided object argument to the `@Component` decorator would contain the
pertinent component metadata. ``` @Component({...}) export class AppComponent {
constructor(@Inject('SpecialFoo') public foo:Foo) {} @Input() name:string; } ``` The scope of a decorator is



limited to the language feature that it decorates. None of the decorations shown here will "leak" to other
classes that follow it in the file.
Always include parentheses `()` when applying a decorator.

A design pattern and mechanism for creating and delivering parts of an application to other parts of an
application that request them.

Angular developers prefer to build applications by defining many simple parts that each do one thing well and
then wiring them together at runtime.

These parts often rely on other parts. An Angular component part might rely on a service part to get data or
perform a calculation. When part "A" relies on another part "B," you say that "A" depends on "B" and that "B" is
a dependency of "A."

You can ask a "dependency injection system" to create "A" for us and handle all the dependencies. If "A" needs
"B" and "B" needs "C," the system resolves that chain of dependencies and returns a fully prepared instance of
"A."

Angular provides and relies upon its own sophisticated dependency-injection system to assemble and run
applications by "injecting" application parts into other application parts where and when needed.

At the core, an injector  returns dependency values on request. The expression
injector.get(token)  returns the value associated with the given token.

A token is an Angular type ( InjectionToken ). You rarely need to work with tokens directly; most methods
accept a class name ( Foo ) or a string ("foo") and Angular converts it to a token. When you write
injector.get(Foo) , the injector returns the value associated with the token for the Foo  class, typically

an instance of Foo  itself.

During many of its operations, Angular makes similar requests internally, such as when it creates a
component  for display.

The Injector  maintains an internal map of tokens to dependency values. If the Injector  can't find a
value for a given token, it creates a new value using a Provider  for that token.

A provider is a recipe for creating new instances of a dependency value associated with a particular token.

An injector can only create a value for a given token if it has a provider  for that token in its internal
provider registry. Registering providers is a critical preparatory step.

Dependency injection



Angular registers some of its own providers with every injector. You can register your own providers.

Read more in the Dependency Injection page.

{@a directive}

{@a directives}

An Angular class responsible for creating, reshaping, and interacting with HTML elements in the browser DOM.
The directive is Angular's most fundamental feature.

A directive is usually associated with an HTML element or attribute. This element or attribute is often referred to
as the directive itself.

When Angular finds a directive in an HTML template, it creates the matching directive class instance and gives
the instance control over that portion of the browser DOM.

You can invent custom HTML markup (for example, <my-directive> ) to associate with your custom
directives. You add this custom markup to HTML templates as if you were writing native HTML. In this way,
directives become extensions of HTML itself.

Directives fall into one of the following categories:

Components combine application logic with an HTML template to render application views. Components
are usually represented as HTML elements. They are the building blocks of an Angular application.

Attribute directives can listen to and modify the behavior of other HTML elements, attributes, properties,
and components. They are usually represented as HTML attributes, hence the name.

Structural directives are responsible for shaping or reshaping HTML layout, typically by adding, removing,
or manipulating elements and their children.

{@a E}

The official JavaScript language specification.

The latest approved version of JavaScript is ECMAScript 2017 (also known as "ES2017" or "ES8"). Many
Angular developers write their applications in ES8 or a dialect that strives to be compatible with it, such as

Directive

ECMAScript



TypeScript.

Most modern browsers only support the much older "ECMAScript 5" (also known as "ES5") standard.
Applications written in ES2017, ES2016, ES2015, or one of their dialects must be transpiled to ES5 JavaScript.

Angular developers can write in ES5 directly.

Short hand for ECMAScript 2015.

Short hand for ECMAScript 5, the version of JavaScript run by most modern browsers.

Short hand for ECMAScript 2015.

{@a F}

{@a G}

{@a H}

{@a I}

An object in the Angular dependency-injection system that can find a named dependency in its cache or create
a dependency with a registered provider.

A directive property that can be the target of a property binding (explained in detail in the Template Syntax
page). Data values flow into this property from the data source identified in the template expression to the right
of the equal sign.

See the Input and output properties section of the Template Syntax page.

ES2015

ES5

ES6

Injector

Input



A form of property data binding in which a template expression between double-curly braces renders as text.
That text may be concatenated with neighboring text before it is assigned to an element property or displayed
between element tags, as in this example.

My current hero is {{hero.name}}

Read more about interpolation in the Template Syntax page.

{@a J}

{@a jit}

A bootstrapping method of compiling components and modules in the browser and launching the application
dynamically. Just-in-time mode is a good choice during development. Consider using the ahead-of-time mode
for production apps.

{@a K}

See dash-case.

{@a L}

Directives and components have a lifecycle managed by Angular as it creates, updates, and destroys them.

You can tap into key moments in that lifecycle by implementing one or more of the lifecycle hook interfaces.

Each interface has a single hook method whose name is the interface name prefixed with ng . For example,
the OnInit  interface has a hook method named ngOnInit .

Angular calls these hook methods in the following order:

ngOnChanges : when an input/output binding value changes.

Interpolation

Just-in-time (JIT) compilation

kebab-case

Lifecycle hooks



ngOnInit : after the first ngOnChanges .
ngDoCheck : developer's custom change detection.
ngAfterContentInit : after component content initialized.
ngAfterContentChecked : after every check of component content.
ngAfterViewInit : after a component's views are initialized.
ngAfterViewChecked : after every check of a component's views.
ngOnDestroy : just before the directive is destroyed.

Read more in the Lifecycle Hooks page.

{@a M}

Angular has the following types of modules: * [NgModules](guide/glossary#ngmodule). For details and
examples, see the [NgModules](guide/ngmodule) page. * ES2015 modules, as described in this section.

A cohesive block of code dedicated to a single purpose.

Angular apps are modular.

In general, you assemble an application from many modules, both the ones you write and the ones you acquire
from others.

A module exports something of value in that code, typically one thing such as a class; a module that needs that
class imports it.

The structure of NgModules and the import/export syntax is based on the ES2015 module standard.

An application that adheres to this standard requires a module loader to load modules on request and resolve
inter-module dependencies. Angular doesn't include a module loader and doesn't have a preference for any
particular third-party library. You can use any module library that conforms to the standard.

Modules are typically named after the file in which the exported thing is defined. The Angular DatePipe class
belongs to a feature module named date_pipe  in the file date_pipe.ts .

You rarely access Angular feature modules directly. You usually import them from an Angular scoped package
such as @angular/core .

{@a N}

Module

NgModule



Helps you organize an application into cohesive blocks of functionality. An NgModule identifies the
components, directives, and pipes that the application uses along with the list of external NgModules that the
application needs, such as `FormsModule`. Every Angular application has an application root-module class. By
convention, the class is called `AppModule` and resides in a file named `app.module.ts`. For details and
examples, see [NgModules](guide/ngmodule).

{@a O}

An array whose items arrive asynchronously over time. Observables help you manage asynchronous data,
such as data coming from a backend service. Observables are used within Angular itself, including Angular's
event system and its HTTP client service.

To use observables, Angular uses a third-party library called Reactive Extensions (RxJS). Observables are a
proposed feature for ES2016, the next version of JavaScript.

A directive property that can be the target of event binding (read more in the event binding section of the
Template Syntax page). Events stream out of this property to the receiver identified in the template expression
to the right of the equal sign.

See the Input and output properties section of the Template Syntax page.

{@a P}

The practice of writing individual words, compound words, or phrases such that each word or abbreviation
begins with a capital letter. Class names are typically spelled in PascalCase. For example, Person  and
HeroDetailComponent .

This form is also known as upper camel case to distinguish it from lower camel case or simply camelCase. In
this documentation, "PascalCase" means upper camel case and "camelCase" means lower camel case.

An Angular pipe is a function that transforms input values to output values for display in a view. Here's an

Observable

Output

PascalCase

Pipe



example that uses the built-in currency  pipe to display a numeric value in the local currency.

Price: {{product.price | currency}}

You can also write your own custom pipes. Read more in the page on pipes.

A provider creates a new instance of a dependency for the dependency injection system. It relates a lookup
token to code—sometimes called a "recipe"—that can create a dependency value.

{@a Q}

{@a R}

A technique for building Angular forms through code in a component. The alternative technique is template-
driven forms.

When building reactive forms:

The "source of truth" is the component. The validation is defined using code in the component.
Each control is explicitly created in the component class with new FormControl()  or with
FormBuilder .

The template input elements do not use ngModel .
The associated Angular directives are all prefixed with Form , such as FormGroup ,
FormControl , and FormControlName .

Reactive forms are powerful, flexible, and a good choice for more complex data-entry form scenarios, such as
dynamic generation of form controls.

Most applications consist of many screens or views. The user navigates among them by clicking links and
buttons, and performing other similar actions that cause the application to replace one view with another.

The Angular component router is a richly featured mechanism for configuring and managing the entire view
navigation process, including the creation and destruction of views.

In most cases, components become attached to a router by means of a RouterConfig  that defines routes

Provider

Reactive forms

Router



to views.

A routing component's template has a RouterOutlet  element where it can display views produced by the
router.

Other views in the application likely have anchor tags or buttons with RouterLink  directives that users can
click to navigate.

For more information, see the Routing & Navigation page.

A separate NgModule that provides the necessary service providers and directives for navigating through
application views.

For more information, see the Routing & Navigation page.

An Angular component with a RouterOutlet  that displays views based on router navigations.

For more information, see the Routing & Navigation page.

{@a S}

A way to group related npm packages. Read more at the npm-scope page.

NgModules are delivered within scoped packages such as @angular/core , @angular/common ,
@angular/platform-browser-dynamic , @angular/http , and @angular/router .

Import a scoped package the same way that you import a normal package. The only difference, from a
consumer perspective, is that the scoped package name begins with the Angular scope name, @angular .

For data or logic that is not associated with a specific view or that you want to share across components, build
services.

Router module

Routing component

Scoped package

Service



Applications often require services such as a hero data service or a logging service.

A service is a class with a focused purpose. You often create a service to implement features that are
independent from any specific view, provide shared data or logic across components, or encapsulate external
interactions.

Applications often require services such as a data service or a logging service.

For more information, see the Services page of the Tour of Heroes tutorial.

{@a snake-case}

The practice of writing compound words or phrases such that an underscore ( _ ) separates one word from
the next. This form is also known as underscore case.

{@a structural-directive}

{@a structural-directives}

A category of directive that can shape or reshape HTML layout, typically by adding and removing elements in
the DOM. The ngIf  "conditional element" directive and the ngFor  "repeater" directive are well-known
examples.

Read more in the Structural Directives page.

{@a T}

A chunk of HTML that Angular uses to render a view with the support and guidance of an Angular directive,
most notably a component.

A technique for building Angular forms using HTML forms and input elements in the view. The alternate
technique is Reactive Forms.

snake_case

Structural directives

Template

Template-driven forms



When building template-driven forms:

The "source of truth" is the template. The validation is defined using attributes on the individual input
elements.
Two-way binding with ngModel  keeps the component model synchronized with the user's entry into the
input elements.
Behind the scenes, Angular creates a new control for each input element, provided you have set up a
name  attribute and two-way binding for each input.

The associated Angular directives are all prefixed with ng  such as ngForm , ngModel , and
ngModelGroup .

Template-driven forms are convenient, quick, and simple. They are a good choice for many basic data-entry
form scenarios.

Read about how to build template-driven forms in the Forms page.

A TypeScript-like syntax that Angular evaluates within a data binding.

Read about how to write template expressions in the Template expressions section of the Template Syntax
page.

The process of transforming code written in one form of JavaScript (such as TypeScript) into another form of
JavaScript (such as ES5).

A version of JavaScript that supports most ECMAScript 2015 language features such as decorators.

TypeScript is also notable for its optional typing system, which provides compile-time type checking and strong
tooling support (such as "intellisense," code completion, refactoring, and intelligent search). Many code editors
and IDEs support TypeScript either natively or with plugins.

TypeScript is the preferred language for Angular development, although you can use other JavaScript dialects
such as ES5.

Read more about TypeScript at typescriptlang.org.

Template expression

Transpile

TypeScript



{@a U}

{@a V}

A portion of the screen that displays information and responds to user actions such as clicks, mouse moves,
and keystrokes.

Angular renders a view under the control of one or more directives, especially component directives and their
companion templates. The component plays such a prominent role that it's often convenient to refer to a
component as a view.

Views often contain other views. Any view might be loaded and unloaded dynamically as the user navigates
through the application, typically under the control of a router.

{@a W}

{@a X}

{@a Y}

{@a Z}

A mechanism for encapsulating and intercepting a JavaScript application's asynchronous activity.

The browser DOM and JavaScript have a limited number of asynchronous activities, such as DOM events (for
example, clicks), promises, and XHR calls to remote servers.

Zones intercept all of these activities and give a "zone client" the opportunity to take action before and after the
async activity finishes.

Angular runs your application in a zone where it can respond to asynchronous events by checking for data
changes and updating the information it displays via data bindings.

Learn more about zones in this Brian Ford video.

View

Zone



You learned the basics of Angular Dependency injection in the Dependency Injection guide.

Angular has a Hierarchical Dependency Injection system. There is actually a tree of injectors that parallel an
application's component tree. You can reconfigure the injectors at any level of that component tree.

This guide explores this system and how to use it to your advantage.

Try the .

In the Dependency Injection guide, you learned how to configure a dependency injector and how to retrieve
dependencies where you need them.

In fact, there is no such thing as the injector. An application may have multiple injectors. An Angular application
is a tree of components. Each component instance has its own injector. The tree of components parallels the
tree of injectors.

The component's injector may be a _proxy_ for an ancestor injector higher in the component tree. That's an
implementation detail that improves efficiency. You won't notice the difference and your mental model should
be that every component has its own injector.

Consider this guide's variation on the Tour of Heroes application. At the top is the AppComponent  which has
some sub-components. One of them is the HeroesListComponent . The HeroesListComponent
holds and manages multiple instances of the HeroTaxReturnComponent . The following diagram
represents the state of the this guide's three-level component tree when there are three instances of
HeroTaxReturnComponent  open simultaneously.

Hierarchical Dependency Injectors

The injector tree



When a component requests a dependency, Angular tries to satisfy that dependency with a provider registered
in that component's own injector. If the component's injector lacks the provider, it passes the request up to its
parent component's injector. If that injector can't satisfy the request, it passes it along to its parent injector. The
requests keep bubbling up until Angular finds an injector that can handle the request or runs out of ancestor
injectors. If it runs out of ancestors, Angular throws an error.

You can cap the bubbling. An intermediate component can declare that it is the "host" component. The hunt for
providers will climb no higher than the injector for that host component. This is a topic for another day.

You can re-register a provider for a particular dependency token at multiple levels of the injector tree. You don't
have to re-register providers. You shouldn't do so unless you have a good reason. But you can.

As the resolution logic works upwards, the first provider encountered wins. Thus, a provider in an intermediate
injector intercepts a request for a service from something lower in the tree. It effectively "reconfigures" and
"shadows" a provider at a higher level in the tree.

If you only specify providers at the top level (typically the root AppModule ), the tree of injectors appears to
be flat. All requests bubble up to the root NgModule  injector that you configured with the
bootstrapModule  method.

The ability to configure one or more providers at different levels opens up interesting and useful possibilities.

Injector bubbling

Re-providing a service at different levels

Component injectors



Architectural reasons may lead you to restrict access to a service to the application domain where it belongs.

The guide sample includes a VillainsListComponent  that displays a list of villains. It gets those villains
from a VillainsService .

While you could provide VillainsService  in the root AppModule  (that's where you'll find the
HeroesService ), that would make the VillainsService  available everywhere in the application,

including the Hero workflows.

If you later modified the VillainsService , you could break something in a hero component somewhere.
That's not supposed to happen but providing the service in the root AppModule  creates that risk.

Instead, provide the VillainsService  in the providers  metadata of the
VillainsListComponent  like this:

By providing VillainsService  in the VillainsListComponent  metadata and nowhere else, the
service becomes available only in the VillainsListComponent  and its sub-component tree. It's still a
singleton, but it's a singleton that exist solely in the villain domain.

Now you know that a hero component can't access it. You've reduced your exposure to error.

Many applications allow users to work on several open tasks at the same time. For example, in a tax
preparation application, the preparer could be working on several tax returns, switching from one to the other
throughout the day.

This guide demonstrates that scenario with an example in the Tour of Heroes theme. Imagine an outer
HeroListComponent  that displays a list of super heroes.

To open a hero's tax return, the preparer clicks on a hero name, which opens a component for editing that
return. Each selected hero tax return opens in its own component and multiple returns can be open at the
same time.

Each tax return component has the following characteristics:

Is its own tax return editing session.
Can change a tax return without affecting a return in another component.
Has the ability to save the changes to its tax return or cancel them.

Scenario: service isolation

Scenario: multiple edit sessions



One might suppose that the HeroTaxReturnComponent  has logic to manage and restore changes. That
would be a pretty easy task for a simple hero tax return. In the real world, with a rich tax return data model, the
change management would be tricky. You might delegate that management to a helper service, as this
example does.

Here is the HeroTaxReturnService . It caches a single HeroTaxReturn , tracks changes to that
return, and can save or restore it. It also delegates to the application-wide singleton HeroService , which it
gets by injection.

Here is the HeroTaxReturnComponent  that makes use of it.

The tax-return-to-edit arrives via the input property which is implemented with getters and setters. The setter
initializes the component's own instance of the HeroTaxReturnService  with the incoming return. The
getter always returns what that service says is the current state of the hero. The component also asks the
service to save and restore this tax return.

There'd be big trouble if this service were an application-wide singleton. Every component would share the
same service instance. Each component would overwrite the tax return that belonged to another hero. What a
mess!

Look closely at the metadata for the HeroTaxReturnComponent . Notice the providers  property.



The HeroTaxReturnComponent  has its own provider of the HeroTaxReturnService . Recall that
every component instance has its own injector. Providing the service at the component level ensures that every
instance of the component gets its own, private instance of the service. No tax return overwriting. No mess.

The rest of the scenario code relies on other Angular features and techniques that you can learn about
elsewhere in the documentation. You can review it and download it from the .

Another reason to re-provide a service is to substitute a more specialized implementation of that service,
deeper in the component tree.

Consider again the Car example from the Dependency Injection guide. Suppose you configured the root
injector (marked as A) with generic providers for CarService , EngineService  and TiresService .

You create a car component (A) that displays a car constructed from these three generic services.

Then you create a child component (B) that defines its own, specialized providers for CarService  and
EngineService  that have special capabilites suitable for whatever is going on in component (B).

Component (B) is the parent of another component (C) that defines its own, even more specialized provider for
CarService .

Behind the scenes, each component sets up its own injector with zero, one, or more providers defined for that
component itself.

When you resolve an instance of Car  at the deepest component (C), its injector produces an instance of
Car  resolved by injector (C) with an Engine  resolved by injector (B) and Tires  resolved by the root

injector (A).

Scenario: specialized providers



The code for this _cars_ scenario is in the `car.components.ts` and `car.services.ts` files of the sample which
you can review and download from the .



Most front-end applications communicate with backend services over the HTTP protocol. Modern browsers
support two different APIs for making HTTP requests: the XMLHttpRequest  interface and the fetch()

API.

With HttpClient , @angular/common/http  provides a simplified API for HTTP functionality for use
with Angular applications, building on top of the XMLHttpRequest  interface exposed by browsers.
Additional benefits of HttpClient  include testability support, strong typing of request and response
objects, request and response interceptor support, and better error handling via apis based on Observables.

Before you can use the HttpClient , you need to install the HttpClientModule  which provides it. This
can be done in your application module, and is only necessary once.

// app.module.ts:

import {NgModule} from '@angular/core';
import {BrowserModule} from '@angular/platform-browser';

// Import HttpClientModule from @angular/common/http
import {HttpClientModule} from '@angular/common/http';

@NgModule({
  imports: [
    BrowserModule,
    // Include it under 'imports' in your application module
    // after BrowserModule.
    HttpClientModule,
  ],
})
export class MyAppModule {}

Once you import HttpClientModule  into your app module, you can inject HttpClient  into your
components and services.

HttpClient

Setup: installing the module

Making a request for JSON data



The most common type of request applications make to a backend is to request JSON data. For example,
suppose you have an API endpoint that lists items, /api/items , which returns a JSON object of the form:

{
  "results": [
    "Item 1",
    "Item 2",
  ]
}

The get()  method on HttpClient  makes accessing this data straightforward.

@Component(...)
export class MyComponent implements OnInit {

  results: string[];

  // Inject HttpClient into your component or service.
  constructor(private http: HttpClient) {}

  ngOnInit(): void {
    // Make the HTTP request:
    this.http.get('/api/items').subscribe(data => {
      // Read the result field from the JSON response.
      this.results = data['results'];
    });
  }
}

In the above example, the data['results']  field access stands out because you use bracket notation to
access the results field. If you tried to write data.results , TypeScript would correctly complain that the
Object  coming back from HTTP does not have a results  property. That's because while
HttpClient  parsed the JSON response into an Object , it doesn't know what shape that object is.

You can, however, tell HttpClient  what type the response will be, which is recommended. To do so, first
you define an interface with the correct shape:

interface ItemsResponse {
  results: string[];
}

Typechecking the response



Then, when you make the HttpClient.get  call, pass a type parameter:

http.get<ItemsResponse>('/api/items').subscribe(data => {
  // data is now an instance of type ItemsResponse, so you can do this:
  this.results = data.results;
});

The response body doesn't return all the data you may need. Sometimes servers return special headers or
status codes to indicate certain conditions, and inspecting those can be necessary. To do this, you can tell
HttpClient  you want the full response instead of just the body with the observe  option:

http
  .get<MyJsonData>('/data.json', {observe: 'response'})
  .subscribe(resp => {
    // Here, resp is of type HttpResponse<MyJsonData>.
    // You can inspect its headers:
    console.log(resp.headers.get('X-Custom-Header'));
    // And access the body directly, which is typed as MyJsonData as requested.
    console.log(resp.body.someField);
  });

As you can see, the resulting object has a body  property of the correct type.

What happens if the request fails on the server, or if a poor network connection prevents it from even reaching
the server? HttpClient  will return an error instead of a successful response.

To handle it, add an error handler to your .subscribe()  call:

http
  .get<ItemsResponse>('/api/items')
  .subscribe(
    // Successful responses call the first callback.
    data => {...},
    // Errors will call this callback instead:
    err => {
      console.log('Something went wrong!');
    }
  );

Reading the full response

Error handling



Detecting that an error occurred is one thing, but it's more useful to know what error actually occurred. The
err  parameter to the callback above is of type HttpErrorResponse , and contains useful information on

what went wrong.

There are two types of errors that can occur. If the backend returns an unsuccessful response code (404, 500,
etc.), it gets returned as an error. Also, if something goes wrong client-side, such as an exception gets thrown
in an RxJS operator, or if a network error prevents the request from completing successfully, an actual
Error  will be thrown.

In both cases, you can look at the HttpErrorResponse  to figure out what happened.

http
  .get<ItemsResponse>('/api/items')
  .subscribe(
    data => {...},
    (err: HttpErrorResponse) => {
      if (err.error instanceof Error) {
        // A client-side or network error occurred. Handle it accordingly.
        console.log('An error occurred:', err.error.message);
      } else {
        // The backend returned an unsuccessful response code.
        // The response body may contain clues as to what went wrong,
        console.log(`Backend returned code ${err.status}, body was: ${err.error}`);
      }
    }
  );

One way to deal with errors is to simply retry the request. This strategy can be useful when the errors are
transient and unlikely to repeat.

RxJS has a useful operator called .retry() , which automatically resubscribes to an Observable, thus
reissuing the request, upon encountering an error.

First, import it:

import 'rxjs/add/operator/retry';

Then, you can use it with HTTP Observables like this:

Getting error details

.retry()



http
  .get<ItemsResponse>('/api/items')
  // Retry this request up to 3 times.
  .retry(3)
  // Any errors after the 3rd retry will fall through to the app.
  .subscribe(...);

Not all APIs return JSON data. Suppose you want to read a text file on the server. You have to tell
HttpClient  that you expect a textual response:

http
  .get('/textfile.txt', {responseType: 'text'})
  // The Observable returned by get() is of type Observable<string>
  // because a text response was specified. There's no need to pass
  // a <string> type parameter to get().
  .subscribe(data => console.log(data));

In addition to fetching data from the server, HttpClient  supports mutating requests, that is, sending data
to the server in various forms.

One common operation is to POST data to a server; for example when submitting a form. The code for sending
a POST request is very similar to the code for GET:

const body = {name: 'Brad'};

http
  .post('/api/developers/add', body)
  // See below - subscribe() is still necessary when using post().
  .subscribe(...);

*Note the `subscribe()` method.* All Observables returned from `HttpClient` are _cold_, which is to say that
they are _blueprints_ for making requests. Nothing will happen until you call `subscribe()`, and every such call
will make a separate request. For example, this code sends a POST request with the same data twice:
```javascript const req = http.post('/api/items/add', body); // 0 requests made - .subscribe() not called.

Requesting non-JSON data

Sending data to the server

Making a POST request

req.subscribe(); // 1 request made. req.subscribe(); // 2 requests made. ```

Besides the URL and a possible request body, there are other aspects of an outgoing request which you may
wish to configure. All of these are available via an options object, which you pass to the request.

One common task is adding an Authorization header to outgoing requests. Here's how you do that:

http
 .post('/api/items/add', body, {
 headers: new HttpHeaders().set('Authorization', 'my-auth-token'),
 })
 .subscribe();

The HttpHeaders class is immutable, so every set() returns a new instance and applies the changes.

Adding URL parameters works in the same way. To send a request with the id parameter set to 3 , you
would do:

http
 .post('/api/items/add', body, {
 params: new HttpParams().set('id', '3'),
 })
 .subscribe();

In this way, you send the POST request to the URL /api/items/add?id=3 .

The above sections detail how to use the basic HTTP functionality in @angular/common/http , but
sometimes you need to do more than just make requests and get data back.

A major feature of @angular/common/http is interception, the ability to declare interceptors which sit in
between your application and the backend. When your application makes a request, interceptors transform it

Configuring other parts of the request

Headers

URL Parameters

Advanced usage

Intercepting all requests or responses

before sending it to the server, and the interceptors can transform the response on its way back before your
application sees it. This is useful for everything from authentication to logging.

To implement an interceptor, you declare a class that implements HttpInterceptor , which has a single
intercept() method. Here is a simple interceptor which does nothing but forward the request through

without altering it:

import {Injectable} from '@angular/core';
import {HttpEvent, HttpInterceptor, HttpHandler, HttpRequest} from '@angular/common/h
ttp';

@Injectable()
export class NoopInterceptor implements HttpInterceptor {
 intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {
 return next.handle(req);
 }
}

intercept is a method which transforms a request into an Observable that eventually returns the
response. In this sense, each interceptor is entirely responsible for handling the request by itself.

Most of the time, though, interceptors will make some minor change to the request and forward it to the rest of
the chain. That's where the next parameter comes in. next is an HttpHandler , an interface that,
similar to intercept , transforms a request into an Observable for the response. In an interceptor, next

always represents the next interceptor in the chain, if any, or the final backend if there are no more
interceptors. So most interceptors will end by calling next on the request they transformed.

Our do-nothing handler simply calls next.handle on the original request, forwarding it without mutating it
at all.

This pattern is similar to those in middleware frameworks such as Express.js.

Simply declaring the NoopInterceptor above doesn't cause your app to use it. You need to wire it up in
your app module by providing it as an interceptor, as follows:

Writing an interceptor

Providing your interceptor

import {NgModule} from '@angular/core';
import {HTTP_INTERCEPTORS} from '@angular/common/http';

@NgModule({
 providers: [{
 provide: HTTP_INTERCEPTORS,
 useClass: NoopInterceptor,
 multi: true,
 }],
})
export class AppModule {}

Note the multi: true option. This is required and tells Angular that HTTP_INTERCEPTORS is an array
of values, rather than a single value.

You may have also noticed that the Observable returned by intercept and HttpHandler.handle is
not an Observable<HttpResponse<any>> but an Observable<HttpEvent<any>> . That's because
interceptors work at a lower level than the HttpClient interface. A single request can generate multiple
events, including upload and download progress events. The HttpResponse class is actually an event
itself, with a type of HttpEventType.HttpResponseEvent .

An interceptor must pass through all events that it does not understand or intend to modify. It must not filter out
events it didn't expect to process. Many interceptors are only concerned with the outgoing request, though, and
will simply return the event stream from next without modifying it.

When you provide multiple interceptors in an application, Angular applies them in the order that you provided
them.

Interceptors exist to examine and mutate outgoing requests and incoming responses. However, it may be
surprising to learn that the HttpRequest and HttpResponse classes are largely immutable.

This is for a reason: because the app may retry requests, the interceptor chain may process an individual
request multiple times. If requests were mutable, a retried request would be different than the original request.
Immutability ensures the interceptors see the same request for each try.

There is one case where type safety cannot protect you when writing interceptors—the request body. It is

Events

Ordering

Immutability

invalid to mutate a request body within an interceptor, but this is not checked by the type system.

If you have a need to mutate the request body, you need to copy the request body, mutate the copy, and then
use clone() to copy the request and set the new body.

Since requests are immutable, they cannot be modified directly. To mutate them, use clone() :

intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {
 // This is a duplicate. It is exactly the same as the original.
 const dupReq = req.clone();

 // Change the URL and replace 'http://' with 'https://'
 const secureReq = req.clone({url: req.url.replace('http://', 'https://')});
}

As you can see, the hash accepted by clone() allows you to mutate specific properties of the request while
copying the others.

A common use of interceptors is to set default headers on outgoing responses. For example, assuming you
have an injectable AuthService which can provide an authentication token, here is how you would write an
interceptor which adds it to all outgoing requests:

import {Injectable} from '@angular/core';
import {HttpEvent, HttpInterceptor, HttpHandler, HttpRequest} from '@angular/common/h
ttp';

@Injectable()
export class AuthInterceptor implements HttpInterceptor {
 constructor(private auth: AuthService) {}

 intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {
 // Get the auth header from the service.
 const authHeader = this.auth.getAuthorizationHeader();
 // Clone the request to add the new header.
 const authReq = req.clone({headers: req.headers.set('Authorization', authHeader)}
);
 // Pass on the cloned request instead of the original request.
 return next.handle(authReq);
 }
}

Setting new headers

The practice of cloning a request to set new headers is so common that there's actually a shortcut for it:

const authReq = req.clone({setHeaders: {Authorization: authHeader}});

An interceptor that alters headers can be used for a number of different operations, including:

Authentication/authorization
Caching behavior; for example, If-Modified-Since
XSRF protection

Because interceptors can process the request and response together, they can do things like log or time
requests. Consider this interceptor which uses console.log to show how long each request takes:

import 'rxjs/add/operator/do';

export class TimingInterceptor implements HttpInterceptor {
 constructor(private auth: AuthService) {}

 intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {
 const started = Date.now();
 return next
 .handle(req)
 .do(event => {
 if (event instanceof HttpResponse) {
 const elapsed = Date.now() - started;
 console.log(`Request for ${req.urlWithParams} took ${elapsed} ms.`);
 }
 });
 }
}

Notice the RxJS do() operator—it adds a side effect to an Observable without affecting the values on the
stream. Here, it detects the HttpResponse event and logs the time the request took.

You can also use interceptors to implement caching. For this example, assume that you've written an HTTP
cache with a simple interface:

Logging

Caching

abstract class HttpCache {
 /**
 * Returns a cached response, if any, or null if not present.
 */
 abstract get(req: HttpRequest<any>): HttpResponse<any>|null;

 /**
 * Adds or updates the response in the cache.
 */
 abstract put(req: HttpRequest<any>, resp: HttpResponse<any>): void;
}

An interceptor can apply this cache to outgoing requests.

@Injectable()
export class CachingInterceptor implements HttpInterceptor {
 constructor(private cache: HttpCache) {}

 intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {
 // Before doing anything, it's important to only cache GET requests.
 // Skip this interceptor if the request method isn't GET.
 if (req.method !== 'GET') {
 return next.handle(req);
 }

 // First, check the cache to see if this request exists.
 const cachedResponse = this.cache.get(req);
 if (cachedResponse) {
 // A cached response exists. Serve it instead of forwarding
 // the request to the next handler.
 return Observable.of(cachedResponse);
 }

 // No cached response exists. Go to the network, and cache
 // the response when it arrives.
 return next.handle(req).do(event => {
 // Remember, there may be other events besides just the response.
 if (event instanceof HttpResponse) {
 // Update the cache.
 this.cache.put(req, event);
 }
 });
 }
}

Obviously this example glosses over request matching, cache invalidation, etc., but it's easy to see that
interceptors have a lot of power beyond just transforming requests. If desired, they can be used to completely
take over the request flow.

To really demonstrate their flexibility, you can change the above example to return two response events if the
request exists in cache—the cached response first, and an updated network response later.

intercept(req: HttpRequest<any>, next: HttpHandler): Observable<HttpEvent<any>> {
 // Still skip non-GET requests.
 if (req.method !== 'GET') {
 return next.handle(req);
 }

 // This will be an Observable of the cached value if there is one,
 // or an empty Observable otherwise. It starts out empty.
 let maybeCachedResponse: Observable<HttpEvent<any>> = Observable.empty();

 // Check the cache.
 const cachedResponse = this.cache.get(req);
 if (cachedResponse) {
 maybeCachedResponse = Observable.of(cachedResponse);
 }

 // Create an Observable (but don't subscribe) that represents making
 // the network request and caching the value.
 const networkResponse = next.handle(req).do(event => {
 // Just like before, check for the HttpResponse event and cache it.
 if (event instanceof HttpResponse) {
 this.cache.put(req, event);
 }
 });

 // Now, combine the two and send the cached response first (if there is
 // one), and the network response second.
 return Observable.concat(maybeCachedResponse, networkResponse);
}

Now anyone doing http.get(url) will receive two responses if that URL has been cached before.

Sometimes applications need to transfer large amounts of data, and those transfers can take time. It's a good
user experience practice to provide feedback on the progress of such transfers; for example, uploading files—

Listening to progress events

and @angular/common/http supports this.

To make a request with progress events enabled, first create an instance of HttpRequest with the special
reportProgress option set:

const req = new HttpRequest('POST', '/upload/file', file, {
 reportProgress: true,
});

This option enables tracking of progress events. Remember, every progress event triggers change detection,
so only turn them on if you intend to actually update the UI on each event.

Next, make the request through the request() method of HttpClient . The result will be an
Observable of events, just like with interceptors:

http.request(req).subscribe(event => {
 // Via this API, you get access to the raw event stream.
 // Look for upload progress events.
 if (event.type === HttpEventType.UploadProgress) {
 // This is an upload progress event. Compute and show the % done:
 const percentDone = Math.round(100 * event.loaded / event.total);
 console.log(`File is ${percentDone}% uploaded.`);
 } else if (event instanceof HttpResponse) {
 console.log('File is completely uploaded!');
 }
});

Cross-Site Request Forgery (XSRF) is an attack technique by which the attacker can trick an authenticated
user into unknowingly executing actions on your website. HttpClient supports a common mechanism
used to prevent XSRF attacks. When performing HTTP requests, an interceptor reads a token from a cookie,
by default XSRF-TOKEN , and sets it as an HTTP header, X-XSRF-TOKEN . Since only code that runs on
your domain could read the cookie, the backend can be certain that the HTTP request came from your client
application and not an attacker.

By default, an interceptor sends this cookie on all mutating requests (POST, etc.) to relative URLs but not on
GET/HEAD requests or on requests with an absolute URL.

To take advantage of this, your server needs to set a token in a JavaScript readable session cookie called
XSRF-TOKEN on either the page load or the first GET request. On subsequent requests the server can verify

Security: XSRF Protection

that the cookie matches the X-XSRF-TOKEN HTTP header, and therefore be sure that only code running on
your domain could have sent the request. The token must be unique for each user and must be verifiable by
the server; this prevents the client from making up its own tokens. Set the token to a digest of your site's
authentication cookie with a salt for added security.

In order to prevent collisions in environments where multiple Angular apps share the same domain or
subdomain, give each application a unique cookie name.

Note that `HttpClient`'s support is only the client half of the XSRF protection scheme. Your backend service
must be configured to set the cookie for your page, and to verify that the header is present on all eligible
requests. If not, Angular's default protection will be ineffective.

If your backend service uses different names for the XSRF token cookie or header, use
HttpClientXsrfModule.withConfig() to override the defaults.

imports: [
 HttpClientModule,
 HttpClientXsrfModule.withConfig({
 cookieName: 'My-Xsrf-Cookie',
 headerName: 'My-Xsrf-Header',
 }),
]

Like any external dependency, the HTTP backend needs to be mocked as part of good testing practice.
@angular/common/http provides a testing library @angular/common/http/testing that makes

setting up such mocking straightforward.

Angular's HTTP testing library is designed for a pattern of testing where the app executes code and makes
requests first. After that, tests expect that certain requests have or have not been made, perform assertions
against those requests, and finally provide responses by "flushing" each expected request, which may trigger
more new requests, etc. At the end, tests can optionally verify that the app has made no unexpected requests.

Configuring custom cookie/header names

Testing HTTP requests

Mocking philosophy

Setup

To begin testing requests made through HttpClient , import HttpClientTestingModule and add it
to your TestBed setup, like so:

import {HttpClientTestingModule} from '@angular/common/http/testing';

beforeEach(() => {
 TestBed.configureTestingModule({
 ...,
 imports: [
 HttpClientTestingModule,
],
 })
});

That's it. Now requests made in the course of your tests will hit the testing backend instead of the normal
backend.

With the mock installed via the module, you can write a test that expects a GET Request to occur and provides
a mock response. The following example does this by injecting both the HttpClient into the test and a
class called HttpTestingController

Expecting and answering requests

it('expects a GET request', inject([HttpClient, HttpTestingController], (http: HttpCl
ient, httpMock: HttpTestingController) => {
 // Make an HTTP GET request, and expect that it return an object
 // of the form {name: 'Test Data'}.
 http
 .get('/data')
 .subscribe(data => expect(data['name']).toEqual('Test Data'));

 // At this point, the request is pending, and no response has been
 // sent. The next step is to expect that the request happened.
 const req = httpMock.expectOne('/data');

 // If no request with that URL was made, or if multiple requests match,
 // expectOne() would throw. However this test makes only one request to
 // this URL, so it will match and return a mock request. The mock request
 // can be used to deliver a response or make assertions against the
 // request. In this case, the test asserts that the request is a GET.
 expect(req.request.method).toEqual('GET');

 // Next, fulfill the request by transmitting a response.
 req.flush({name: 'Test Data'});

 // Finally, assert that there are no outstanding requests.
 httpMock.verify();
}));

The last step, verifying that no requests remain outstanding, is common enough for you to move it into an
afterEach() step:

afterEach(inject([HttpTestingController], (httpMock: HttpTestingController) => {
 httpMock.verify();
}));

If matching by URL isn't sufficient, it's possible to implement your own matching function. For example, you
could look for an outgoing request that has an Authorization header:

const req = httpMock.expectOne((req) => req.headers.has('Authorization'));

Just as with the expectOne() by URL in the test above, if 0 or 2+ requests match this expectation, it will
throw.

Custom request expectations

If you need to respond to duplicate requests in your test, use the match() API instead of expectOne() ,
which takes the same arguments but returns an array of matching requests. Once returned, these requests are
removed from future matching and are your responsibility to verify and flush.

// Expect that 5 pings have been made and flush them.
const reqs = httpMock.match('/ping');
expect(reqs.length).toBe(5);
reqs.forEach(req => req.flush());

Handling more than one request

Application internationalization is a many-faceted area of development, focused on making applications
available and user-friendly to a worldwide audience. This page describes Angular's internationalization (i18n)
tools, which can help you make your app available in multiple languages.

See the i18n Example for a simple example of an AOT-compiled app, translated into French.

{@a angular-i18n}

Angular simplifies the following aspects of internationalization: * Displaying dates, number, percentages, and
currencies in a local format. * Translating text in component templates. * Handling plural forms of words. *
Handling alternative text.

This document focuses on Angular CLI projects, in which the Angular CLI generates most of the boilerplate
necessary to write your app in multiple languages.

{@a setting-up-locale}

A locale is an identifier (id) that refers to a set of user preferences that tend to be shared within a region of the
world, such as country. This document refers to a locale identifier as a "locale" or "locale id".

A Unicode locale identifier is composed of a Unicode language identifier and (optionally) the character -

followed by a locale extension. (For historical reasons the character _ is supported as an alternative to - .)
For example, in the locale id fr-CA the fr refers to the French language identifier, and the CA refers to
the locale extension Canada.

Angular follows the Unicode LDML convention that uses stable identifiers (Unicode locale identifiers) based on
the norm [BCP47](http://www.rfc-editor.org/rfc/bcp/bcp47.txt). It is very important that you follow this convention
when you define your locale, because the Angular i18n tools use this locale id to find the correct corresponding
locale data.

By default, Angular uses the locale en-US , which is English as spoken in the United States of America.

Internationalization (i18n)

Angular and i18n

Setting up the locale of your app

To set your app's locale to another value, use the CLI parameter --locale with the value of the locale id
that you want to use:

ng serve --aot --locale fr

If you use JIT, you also need to define the LOCALE_ID provider in your main module:

For more information about Unicode locale identifiers, see the CLDR core spec.

For a complete list of locales supported by Angular, see the Angular repository.

The locale identifiers used by CLDR and Angular are based on BCP47. These specifications change over time;
the following table maps previous identifiers to current ones at time of writing:

Locale name Old locale id New locale id

Indonesian in id

Hebrew iw he

Romanian Moldova mo ro-MD

Norwegian Bokmål no, no-NO nb

Serbian Latin sh sr-Latn

Filipino tl fil

Portuguese Brazil pt-BR pt

Chinese Simplified zh-cn, zh-Hans-CN zh-Hans

Chinese Traditional zh-tw, zh-Hant-TW zh-Hant

Chinese Traditional Hong Kong zh-hk zh-Hant-HK

Angular pipes can help you with internationalization: the DatePipe , CurrencyPipe , DecimalPipe

and PercentPipe use locale data to format data based on the LOCALE_ID .

By default, Angular only contains locale data for en-US . If you set the value of LOCALE_ID to another
locale, you must import locale data for that new locale. The CLI imports the locale data for you when you use
the parameter --locale with ng serve and ng build .

i18n pipes

If you want to import locale data for other languages, you can do it manually:

The first parameter is an object containing the locale data imported from @angular/common/locales . By
default, the imported locale data is registered with the locale id that is defined in the Angular locale data itself. If
you want to register the imported locale data with another locale id, use the second parameter to specify a
custom locale id. For example, Angular's locale data defines the locale id for French as "fr". You can use the
second parameter to associate the imported French locale data with the custom locale id "fr-FR" instead of "fr".

The files in @angular/common/locales contain most of the locale data that you need, but some
advanced formatting options might only be available in the extra dataset that you can import from
@angular/common/locales/extra . An error message informs you when this is the case.

All locale data used by Angular are extracted from the Unicode Consortium's Common Locale Data Repository
(CLDR).

This document refers to a unit of translatable text as "text," a "message", or a "text message."

The i18n template translation process has four phases:

1. Mark static text messages in your component templates for translation.

2. An Angular i18n tool extracts the marked text into an industry standard translation source file.

3. A translator edits that file, translating the extracted text into the target language, and returns the file to you.

4. The Angular compiler imports the completed translation files, replaces the original messages with
translated text, and generates a new version of the app in the target language.

You need to build and deploy a separate version of the app for each supported language.

{@a i18n-attribute}

The Angular i18n attribute marks translatable content. Place it on every element tag whose fixed text is to
be translated.

In the example below, an <h1> tag displays a simple English language greeting, "Hello i18n!"

To mark the greeting for translation, add the i18n attribute to the <h1> tag.

Template translations

Mark text with the i18n attribute

`i18n` is a custom attribute, recognized by Angular tools and compilers. After translation, the compiler removes
it. It is not an Angular directive.

{@a help-translator}

To translate a text message accurately, the translator may need additional information or context.

You can add a description of the text message as the value of the i18n attribute, as shown in the example
below:

The translator may also need to know the meaning or intent of the text message within this particular app
context.

You add context by beginning the i18n attribute value with the meaning and separating it from the
description with the | character: <meaning>|<description>

All occurrences of a text message that have the same meaning will have the same translation. A text message
that is associated with different meanings can have different translations.

The Angular extraction tool preserves both the meaning and the description in the translation source file to
facilitate contextually-specific translations, but only the combination of meaning and text message are used to
generate the specific id of a translation. If you have two similar text messages with different meanings, they are
extracted separately. If you have two similar text messages with different descriptions (not different meanings),
then they are extracted only once.

{@a custom-id}

The angular i18n extractor tool generates a file with a translation unit entry for each i18n attribute in a
template. By default, it assigns each translation unit a unique id such as this one:

When you change the translatable text, the extractor tool generates a new id for that translation unit. You must
then update the translation file with the new id.

Alternatively, you can specify a custom id in the i18n attribute by using the prefix @@ . The example below
defines the custom id introductionHeader :

When you specify a custom id, the extractor tool and compiler generate a translation unit with that custom id.

The custom id is persistent. The extractor tool does not change it when the translatable text changes.

Help the translator with a description and meaning

Set a custom id for persistence and maintenance

Therefore, you do not need to update the translation. This approach makes maintenance easier.

You can use a custom id in combination with a description by including both in the value of the i18n

attribute. In the example below, the i18n attribute value includes a description, followed by the custom
id :

You also can add a meaning, as shown in this example:

Be sure to define custom ids that are unique. If you use the same id for two different text messages, only the
first one is extracted, and its translation is used in place of both original text messages.

In the example below the custom id myId is used for two different messages:

 <h3 i18n="@@myId">Hello</h3>
 <!-- ... -->
 <p i18n="@@myId">Good bye</p>

Consider this translation to French:

 <trans-unit id="myId" datatype="html">
 <source>Hello</source>
 <target state="new">Bonjour</target>
 </trans-unit>

Because the custom id is the same, both of the elements in the resulting translation contain the same text,
Bonjour :

 <h3>Bonjour</h3>
 <!-- ... -->
 <p>Bonjour</p>

{@a no-element}

If there is a section of text that you would like to translate, you can wrap it in a tag. However, if you
don't want to create a new DOM element merely to facilitate translation, you can wrap the text in an
<ng-container> element. The <ng-container> is transformed into an html comment:

Use a custom id with a description

Define unique custom ids

Translate text without creating an element

{@a translate-attributes}

You also can translate attributes. For example, assume that your template has an image with a title

attribute:

This title attribute needs to be translated.

To mark an attribute for translation, add an attribute in the form of i18n-x , where x is the name of the
attribute to translate. The following example shows how to mark the title attribute for translation by adding
the i18n-title attribute on the img tag:

This technique works for any attribute of any element.

You also can assign a meaning, description, and id with the
i18n-x="<meaning>|<description>@@<id>" syntax.

{@a plural-ICU}

Different languages have different pluralization rules.

Suppose that you want to say that something was "updated x minutes ago". In English, depending upon the
number of minutes, you could display "just now", "one minute ago", or "x minutes ago" (with x being the actual
number). Other languages might express the cardinality differently.

The example below shows how to use a plural ICU expression to display one of those three options based
on when the update occurred:

The first parameter is the key. It is bound to the component property (minutes), which determines the
number of minutes.
The second parameter identifies this as a plural translation type.
The third parameter defines a pluralization pattern consisting of pluralization categories and their matching
values.

This syntax conforms to the ICU Message Format as specified in the CLDR pluralization rules.

Pluralization categories include (depending on the language):

Add i18n translation attributes

Translate singular and plural

=0 (or any other number)
zero
one
two
few
many
other

After the pluralization category, put the default English text in braces ({}).

In the example above, the three options are specified according to that pluralization pattern. For talking about
about zero minutes, you use =0 {just now} . For one minute, you use =1 {one minute} . Any
unmatched cardinality uses other {{{minutes}} minutes ago} . You could choose to add patterns for
two, three, or any other number if the pluralization rules were different. For the example of "minute", only these
three patterns are necessary in English.

You can use interpolations and html markup inside of your translations.

{@a select-ICU}

If your template needs to display different text messages depending on the value of a variable, you need to
translate all of those alternative text messages.

You can handle this with a select ICU expression. It is similar to the plural ICU expressions except
that you choose among alternative translations based on a string value instead of a number, and you define
those string values.

The following format message in the component template binds to the component's gender property, which
outputs one of the following string values: "m", "f" or "o". The message maps those values to the appropriate
translations:

{@a nesting-ICUS}

You can also nest different ICU expressions together, as shown in this example:

{@a ng-xi18n}

Select among alternative text messages

Nesting plural and select ICU expressions

Use the ng xi18n command provided by the CLI to extract the text messages marked with i18n into a
translation source file.

Open a terminal window at the root of the app project and enter the ng xi18n command:

ng xi18n

By default, the tool generates a translation file named messages.xlf in the XML Localization Interchange
File Format (XLIFF, version 1.2).

If you don't use the CLI, you can use the `ng-xi18n` tool directly from the `@angular/compiler-cli` package, or
you can manually use the CLI Webpack plugin `ExtractI18nPlugin` from the `@ngtools/webpack` package.

{@a other-formats}

Angular i18n tooling supports three translation formats: * XLIFF 1.2 (default) * XLIFF 2 * XML Message Bundle
(XMB)

You can specify the translation format explicitly with the --i18nFormat flag as illustrated in these example
commands:

ng xi18n --i18nFormat=xlf ng xi18n --i18nFormat=xlf2 ng xi18n --i18nFormat=xmb

The sample in this guide uses the default XLIFF 1.2 format.

XLIFF files have the extension .xlf. The XMB format generates .xmb source files but uses .xtb (XML Translation
Bundle: XTB) translation files.

{@a ng-xi18n-options}

You can specify the output path used by the CLI to extract your translation source file with the parameter
--outputPath :

ng xi18n --outputPath src/locale

You can change the name of the translation source file that is generated by the extraction tool with the

Create a translation source file with ng xi18n

Other translation formats

Other options

parameter --outFile :

ng xi18n --outFile source.xlf

You can specify the base locale of your app with the parameter --locale :

ng xi18n --locale fr

The extraction tool uses the locale to add the app locale information into your translation source file. This
information is not used by Angular, but external translation tools may need it.

{@a translate}

The ng xi18n command generates a translation source file named messages.xlf in the project src

folder.

The next step is to translate this source file into the specific language translation files. The example in this
guide creates a French translation file.

{@a localization-folder}

Most apps are translated into more than one other language. For this reason, it is standard practice for the
project structure to reflect the entire internationalization effort.

One approach is to dedicate a folder to localization and store related assets, such as internationalization files,
there.

Localization and internationalization are different but closely related terms.

This guide follows that approach. It has a locale folder under src/ . Assets within that folder have a
filename extension that matches their associated locale.

For each translation source file, there must be at least one language translation file for the resulting translation.

For this example:

1. Make a copy of the messages.xlf file.

Translate text messages

Create a localization folder

Create the translation files

2. Put the copy in the locale folder.
3. Rename the copy to messages.fr.xlf for the French language translation.

If you were translating to other languages, you would repeat these steps for each target language.

{@a translate-text-nodes}

In a large translation project, you would send the messages.fr.xlf file to a French translator who would
enter the translations using an XLIFF file editor.

This sample file is easy to translate without a special editor or knowledge of French.

1. Open messages.fr.xlf and find the first <trans-unit> section:

This XML element represents the translation of the <h1> greeting tag that you marked with the i18n

attribute earlier in this guide.

Note that the translation unit id=introductionHeader is derived from the custom id that you set
earlier, but without the @@ prefix required in the source HTML.

1. Duplicate the <source/> tag, rename it target , and then replace its content with the French
greeting. If you were working with a more complex translation, you could use the the information and
context provided by the source, description, and meaning elements to guide your selection of the
appropriate French translation.

1. Translate the other text nodes the same way:

The Angular i18n tools generated the ids for these translation units. Don't change them. Each `id` depends
upon the content of the template text and its assigned meaning. If you change either the text or the meaning,
then the `id` changes. For more information, see the **[translation file maintenance discussion](#custom-id)**.

{@a translate-plural-select}

Plural and select ICU expressions are extracted separately, so they require special attention when preparing
for translation.

Look for these expressions in relation to other translation units that you recognize from elsewhere in the source
template. In this example, you know the translation unit for the select must be just below the translation

Translate text nodes

Translate plural and select expressions

unit for the logo.

{@a translate-plural}

To translate a plural , translate its ICU format match values:

You can add or remove plural cases, with each language having its own cardinality. (See CLDR plural rules.)

{@a translate-select}

Below is the content of our example select ICU expression in the component template:

The extraction tool broke that into two translation units because ICU expressions are extracted separately.

The first unit contains the text that was outside of the select . In place of the select is a placeholder,
<x id="ICU"> , that represents the select message. Translate the text and move around the

placeholder if necessary, but don't remove it. If you remove the placeholder, the ICU expression will not be
present in your translated app.

The second translation unit, immediately below the first one, contains the select message. Translate that
as well.

Here they are together, after translation:

{@a translate-nested}

A nested expression is similar to the previous examples. As in the previous example, there are two translation
units. The first one contains the text outside of the nested expression:

The second unit contains the complete nested expression:

And both together:

The entire template translation is complete. The next section describes how to load that translation into the
app.

{@a app-pre-translation}

Translate plural

Translate select

Translate a nested expression

The sample app and its translation file are now as follows:

{@a merge}

To merge the translated text into component templates, compile the app with the completed translation file.
Provide the Angular compiler with three translation-specific pieces of information:

The translation file.
The translation file format.
The locale (fr or en-US for instance).

The compilation process is the same whether the translation file is in .xlf format or in another format that
Angular understands, such as .xtb .

How you provide this information depends upon whether you compile with the JIT compiler or the AOT
compiler.

With AOT, you pass the information as a CLI parameter.
With JIT, you provide the information at bootstrap time.

{@a merge-aot}

The AOT (Ahead-of-Time) compiler is part of a build process that produces a small, fast, ready-to-run
application package.

When you internationalize with the AOT compiler, you must pre-build a separate application package for each
language and serve the appropriate package based on either server-side language detection or url parameters.

You also need to instruct the AOT compiler to use your translation file. To do so, you use three options with the
ng serve or ng build commands:

--i18nFile : the path to the translation file.
--i18nFormat : the format of the translation file.
--locale : the locale id.

The example below shows how to serve the French language file created in previous sections of this guide:

The app and its translation file

Merge the completed translation file into the app

Merge with the AOT compiler

ng serve --aot --i18nFile=src/locale/messages.fr.xlf --i18nFormat=xlf --locale=fr

{@a merge-jit}

The JIT compiler compiles the app in the browser as the app loads. Translation with the JIT compiler is a
dynamic process of:

1. Importing the appropriate language translation file as a string constant.
2. Creating corresponding translation providers for the JIT compiler.
3. Bootstrapping the app with those providers.

Three providers tell the JIT compiler how to translate the template texts for a particular language while
compiling the app:

TRANSLATIONS is a string containing the content of the translation file.
TRANSLATIONS_FORMAT is the format of the file: xlf , xlf2 , or xtb .
LOCALE_ID is the locale of the target language.

The Angular bootstrapModule method has a second compilerOptions parameter that can influence
the behavior of the compiler. You can use it to provide the translation providers:

Then provide the LOCALE_ID in the main module:

{@a missing-translation}

By default, when a translation is missing, the build succeeds but generates a warning such as
Missing translation for message "foo" . You can configure the level of warning that is generated

by the Angular compiler:

Error: throw an error. If you are using AOT compilation, the build will fail. If you are using JIT compilation,
the app will fail to load.
Warning (default): show a 'Missing translation' warning in the console or shell.
Ignore: do nothing.

If you use the AOT compiler, specify the warning level by using the CLI parameter
--missingTranslation . The example below shows how to set the warning level to error:

ng serve --aot --missingTranslation=error

Merge with the JIT compiler

Report missing translations

If you use the JIT compiler, specify the warning level in the compiler config at bootstrap by adding the
'MissingTranslationStrategy' property. The example below shows how to set the warning level to error:

The Angular Language Service is a way to get completions, errors, hints, and navigation inside your Angular
templates whether they are external in an HTML file or embedded in annotations/decorators in a string. The
Angular Language Service autodetects that you are opening an Angular file, reads your tsconfig.json
file, finds all the templates you have in your application, and then provides language services for any templates
that you open.

Autocompletion can speed up your development time by providing you with contextual possibilities and hints as
you type. This example shows autocomplete in an interpolation. As you type it out, you can hit tab to complete.

There are also completions within elements. Any elements you have as a component selector will show up in
the completion list.

The Angular Language Service can also forewarn you of mistakes in your code. In this example, Angular
doesn't know what orders is or where it comes from.

Navigation allows you to hover to see where a component, directive, module, etc. is from and then click and
press F12 to go directly to its definition.

Angular Language Service

Autocompletion

Error checking

Navigation

Angular Language Service is currently available for Visual Studio Code and WebStorm.

In Visual Studio Code, install Angular Language Service from the store, which is accessible from the bottom
icon on the left menu pane. You can also use the VS Quick Open (⌘+P) to search for the extension. When
you've opened it, enter the following command:

ext install ng-template

Then click the install button to install the Angular Language Service.

In webstorm, you have to install the language service as a dev dependency. When Angular sees this dev
dependency, it provides the language service inside of WebStorm. Webstorm then gives you colorization inside
the template and autocomplete in addition to the Angular Language Service.

Here's the dev dependency you need to have in package.json :

devDependencies {
 "@angular/language-service": "^4.0.0"
}

Then in the terminal window at the root of your project, install the devDependencies with npm or
yarn :

Angular Language Service in your editor

Visual Studio Code

WebStorm

npm install

OR

yarn

OR

yarn install

In Sublime Text, you first need an extension to allow Typescript. Install the latest version of typescript in a local
node_modules directory:

npm install --save-dev typescript

Then install the Angular Language Service in the same location:
sh npm install --save-dev @angular/language-service

Starting with TypeScript 2.3, TypeScript has a language service plugin model that the language service can
use.

Next, in your user preferences (Cmd+, or Ctrl+,), add:

"typescript-tsdk": "<path to your folder>/node_modules/typescript/lib"

You can also install Angular Language Service in your project with the following npm command:

npm install --save-dev @angular/language-service

Additionally, add the following to the "compilerOptions" section of your project's tsconfig.json .

 "plugins": [
 {"name": "@angular/language-service"}
]

Note that this only provides diagnostics and completions in .ts files. You need a custom sublime plugin (or

Sublime Text

Installing in your project

modifications to the current plugin) for completions in HTML files.

When you use an editor with a language service, there's an editor process which starts a separate language
process/service to which it speaks through an RPC. Any time you type inside of the editor, it sends information
to the other process to track the state of your project. When you trigger a completion list within a template, the
editor process first parses the template into an HTML AST, or abstract syntax tree. Then the Angular compiler
interprets what module the template is part of, the scope you're in, and the component selector. Then it figures
out where in the template AST your cursor is. When it determines the context, it can then determine what the
children can be.

It's a little more involved if you are in an interpolation. If you have an interpolation of {{data.---}} inside
a div and need the completion list after data.--- , the compiler can't use the HTML AST to find the
answer. The HTML AST can only tell the compiler that there is some text with the characters
" {{data.---}} ". That's when the template parser produces an expression AST, which resides within the
template AST. The Angular Language Services then looks at data.--- within its context and asks the
TypeScript Language Service what the members of data are. TypeScript then returns the list of possibilities.

For more in-depth information, see the Angular Language Service API

For more information, see Chuck Jazdzewski's presentation on the Angular Language Service from ng-conf
2017.

How the Language Service works

More on Information

A component has a lifecycle managed by Angular.

Angular creates it, renders it, creates and renders its children, checks it when its data-bound properties
change, and destroys it before removing it from the DOM.

Angular offers lifecycle hooks that provide visibility into these key life moments and the ability to act when
they occur.

A directive has the same set of lifecycle hooks, minus the hooks that are specific to component content and
views.

{@a hooks-overview}

Directive and component instances have a lifecycle as Angular creates, updates, and destroys them.
Developers can tap into key moments in that lifecycle by implementing one or more of the lifecycle hook
interfaces in the Angular core library.

Each interface has a single hook method whose name is the interface name prefixed with ng . For example,
the OnInit interface has a hook method named ngOnInit() that Angular calls shortly after creating the
component:

Lifecycle Hooks

Component lifecycle hooks overview

No directive or component will implement all of the lifecycle hooks and some of the hooks only make sense for
components. Angular only calls a directive/component hook method if it is defined.

{@a hooks-purpose-timing}

After creating a component/directive by calling its constructor, Angular calls the lifecycle hook methods in the
following sequence at specific moments:

Lifecycle sequence

Hook Purpose and Timing

ngOnChanges() Respond when Angular (re)sets data-bound input properties. The
method receives a `SimpleChanges` object of current and previous
property values. Called before `ngOnInit()` and whenever one or
more data-bound input properties change.

ngOnInit() Initialize the directive/component after Angular first displays the
data-bound properties and sets the directive/component's input
properties. Called _once_, after the _first_ `ngOnChanges()`.

ngDoCheck() Detect and act upon changes that Angular can't or won't detect on
its own. Called during every change detection run, immediately after
`ngOnChanges()` and `ngOnInit()`.

ngAfterContentInit() Respond after Angular projects external content into the
component's view. Called _once_ after the first `ngDoCheck()`. _A
component-only hook_.

ngAfterContentChecked() Respond after Angular checks the content projected into the
component. Called after the `ngAfterContentInit()` and every
subsequent `ngDoCheck()`. _A component-only hook_.

ngAfterViewInit() Respond after Angular initializes the component's views and child
views. Called _once_ after the first `ngAfterContentChecked()`. _A
component-only hook_.

ngAfterViewChecked() Respond after Angular checks the component's views and child
views. Called after the `ngAfterViewInit` and every subsequent
`ngAfterContentChecked()`. _A component-only hook_.

ngOnDestroy Cleanup just before Angular destroys the directive/component.

Unsubscribe Observables and detach event handlers to avoid
memory leaks. Called _just before_ Angular destroys the
directive/component.

{@a interface-optional}

The interfaces are optional for JavaScript and Typescript developers from a purely technical perspective. The

Interfaces are optional (technically)

JavaScript language doesn't have interfaces. Angular can't see TypeScript interfaces at runtime because they
disappear from the transpiled JavaScript.

Fortunately, they aren't necessary. You don't have to add the lifecycle hook interfaces to directives and
components to benefit from the hooks themselves.

Angular instead inspects directive and component classes and calls the hook methods if they are defined.
Angular finds and calls methods like ngOnInit() , with or without the interfaces.

Nonetheless, it's good practice to add interfaces to TypeScript directive classes in order to benefit from strong
typing and editor tooling.

{@a other-lifecycle-hooks}

Other Angular sub-systems may have their own lifecycle hooks apart from these component hooks.

3rd party libraries might implement their hooks as well in order to give developers more control over how these
libraries are used.

{@a the-sample}

The demonstrates the lifecycle hooks in action through a series of exercises presented as components under
the control of the root AppComponent .

They follow a common pattern: a parent component serves as a test rig for a child component that illustrates
one or more of the lifecycle hook methods.

Here's a brief description of each exercise:

Other Angular lifecycle hooks

Lifecycle examples

Component Description

Peek-a-boo Demonstrates every lifecycle hook. Each hook method writes to the on-screen log.

Spy Directives have lifecycle hooks too. A `SpyDirective` can log when the element it
spies upon is created or destroyed using the `ngOnInit` and `ngOnDestroy` hooks.
This example applies the `SpyDirective` to a `
` in an `ngFor` *hero* repeater managed by the parent `SpyComponent`.

OnChanges See how Angular calls the `ngOnChanges()` hook with a `changes` object every
time one of the component input properties changes. Shows how to interpret the
`changes` object.

DoCheck Implements an `ngDoCheck()` method with custom change detection. See how
often Angular calls this hook and watch it post changes to a log.

AfterView Shows what Angular means by a *view*. Demonstrates the `ngAfterViewInit` and
`ngAfterViewChecked` hooks.

AfterContent Shows how to project external content into a component and how to distinguish
projected content from a component's view children. Demonstrates the
`ngAfterContentInit` and `ngAfterContentChecked` hooks.

Counter Demonstrates a combination of a component and a directive each with its own
hooks. In this example, a `CounterComponent` logs a change (via `ngOnChanges`)
every time the parent component increments its input counter property. Meanwhile,
the `SpyDirective` from the previous example is applied to the `CounterComponent`
log where it watches log entries being created and destroyed.

The remainder of this page discusses selected exercises in further detail.

{@a peek-a-boo}

The PeekABooComponent demonstrates all of the hooks in one component.

You would rarely, if ever, implement all of the interfaces like this. The peek-a-boo exists to show how Angular
calls the hooks in the expected order.

This snapshot reflects the state of the log after the user clicked the Create... button and then the Destroy...

Peek-a-boo: all hooks

button.

The sequence of log messages follows the prescribed hook calling order: OnChanges , OnInit ,
DoCheck (3x), AfterContentInit , AfterContentChecked (3x), AfterViewInit ,
AfterViewChecked (3x), and OnDestroy .

The constructor isn't an Angular hook *per se*. The log confirms that input properties (the `name` property in
this case) have no assigned values at construction.

Had the user clicked the Update Hero button, the log would show another OnChanges and two more triplets
of DoCheck , AfterContentChecked and AfterViewChecked . Clearly these three hooks fire often.
Keep the logic in these hooks as lean as possible!

The next examples focus on hook details.

{@a spy}

Go undercover with these two spy hooks to discover when an element is initialized or destroyed.

This is the perfect infiltration job for a directive. The heroes will never know they're being watched.

Spying OnInit and OnDestroy

Kidding aside, pay attention to two key points: 1. Angular calls hook methods for *directives* as well as
components.

2. A spy directive can provide insight into a DOM object that you cannot change directly. Obviously you can't
touch the implementation of a native `
`. You can't modify a third party component either. But you can watch both with a directive.

The sneaky spy directive is simple, consisting almost entirely of ngOnInit() and ngOnDestroy()
hooks that log messages to the parent via an injected LoggerService .

You can apply the spy to any native or component element and it'll be initialized and destroyed at the same
time as that element. Here it is attached to the repeated hero <div> :

Each spy's birth and death marks the birth and death of the attached hero <div> with an entry in the Hook
Log as seen here:

Adding a hero results in a new hero <div> . The spy's ngOnInit() logs that event.

The Reset button clears the heroes list. Angular removes all hero <div> elements from the DOM and
destroys their spy directives at the same time. The spy's ngOnDestroy() method reports its last moments.

The ngOnInit() and ngOnDestroy() methods have more vital roles to play in real applications.

{@a oninit}

Use ngOnInit() for two main reasons:

1. To perform complex initializations shortly after construction.
2. To set up the component after Angular sets the input properties.

Experienced developers agree that components should be cheap and safe to construct.

Misko Hevery, Angular team lead, [explains why](http://misko.hevery.com/code-reviewers-guide/flaw-
constructor-does-real-work/) you should avoid complex constructor logic.

Don't fetch data in a component constructor. You shouldn't worry that a new component will try to contact a
remote server when created under test or before you decide to display it. Constructors should do no more than
set the initial local variables to simple values.

An ngOnInit() is a good place for a component to fetch its initial data. The Tour of Heroes Tutorial guide
shows how.

Remember also that a directive's data-bound input properties are not set until after construction. That's a
problem if you need to initialize the directive based on those properties. They'll have been set when
ngOnInit() runs.

The `ngOnChanges()` method is your first opportunity to access those properties. Angular calls
`ngOnChanges()` before `ngOnInit()` and many times after that. It only calls `ngOnInit()` once.

You can count on Angular to call the ngOnInit() method soon after creating the component. That's where
the heavy initialization logic belongs.

{@a ondestroy}

Put cleanup logic in ngOnDestroy() , the logic that must run before Angular destroys the directive.

This is the time to notify another part of the application that the component is going away.

This is the place to free resources that won't be garbage collected automatically. Unsubscribe from
Observables and DOM events. Stop interval timers. Unregister all callbacks that this directive registered with
global or application services. You risk memory leaks if you neglect to do so.

{@a onchanges}

OnInit()

OnDestroy()

Angular calls its ngOnChanges() method whenever it detects changes to input properties of the
component (or directive). This example monitors the OnChanges hook.

The ngOnChanges() method takes an object that maps each changed property name to a SimpleChange
object holding the current and previous property values. This hook iterates over the changed properties and
logs them.

The example component, OnChangesComponent , has two input properties: hero and power .

The host OnChangesParentComponent binds to them like this:

Here's the sample in action as the user makes changes.

The log entries appear as the string value of the power property changes. But the ngOnChanges does not
catch changes to hero.name That's surprising at first.

OnChanges()

Angular only calls the hook when the value of the input property changes. The value of the hero property is
the reference to the hero object. Angular doesn't care that the hero's own name property changed. The hero
object reference didn't change so, from Angular's perspective, there is no change to report!

{@a docheck}

Use the DoCheck hook to detect and act upon changes that Angular doesn't catch on its own.

Use this method to detect a change that Angular overlooked.

The DoCheck sample extends the OnChanges sample with the following ngDoCheck() hook:

This code inspects certain values of interest, capturing and comparing their current state against previous
values. It writes a special message to the log when there are no substantive changes to the hero or the
power so you can see how often DoCheck is called. The results are illuminating:

DoCheck()

While the ngDoCheck() hook can detect when the hero's name has changed, it has a frightful cost. This
hook is called with enormous frequency—after every change detection cycle no matter where the change
occurred. It's called over twenty times in this example before the user can do anything.

Most of these initial checks are triggered by Angular's first rendering of unrelated data elsewhere on the page.
Mere mousing into another <input> triggers a call. Relatively few calls reveal actual changes to pertinent
data. Clearly our implementation must be very lightweight or the user experience suffers.

{@a afterview}

AfterView

The AfterView sample explores the AfterViewInit() and AfterViewChecked() hooks that Angular
calls after it creates a component's child views.

Here's a child view that displays a hero's name in an <input> :

The AfterViewComponent displays this child view within its template:

The following hooks take action based on changing values within the child view, which can only be reached by
querying for the child view via the property decorated with @ViewChild.

{@a wait-a-tick}

The doSomething() method updates the screen when the hero name exceeds 10 characters.

Why does the doSomething() method wait a tick before updating comment ?

Angular's unidirectional data flow rule forbids updates to the view after it has been composed. Both of these
hooks fire after the component's view has been composed.

Angular throws an error if the hook updates the component's data-bound comment property immediately (try
it!). The LoggerService.tick_then() postpones the log update for one turn of the browser's JavaScript
cycle and that's just long enough.

Here's AfterView in action:

Abide by the unidirectional data flow rule

Notice that Angular frequently calls AfterViewChecked() , often when there are no changes of interest.
Write lean hook methods to avoid performance problems.

{@a aftercontent}

The AfterContent sample explores the AfterContentInit() and AfterContentChecked() hooks
that Angular calls after Angular projects external content into the component.

{@a content-projection}

AfterContent

Content projection

Content projection is a way to import HTML content from outside the component and insert that content into the
component's template in a designated spot.

AngularJS developers know this technique as *transclusion*.

Consider this variation on the previous AfterView example. This time, instead of including the child view within
the template, it imports the content from the AfterContentComponent 's parent. Here's the parent's
template:

Notice that the <my-child> tag is tucked between the <after-content> tags. Never put content
between a component's element tags unless you intend to project that content into the component.

Now look at the component's template:

The <ng-content> tag is a placeholder for the external content. It tells Angular where to insert that
content. In this case, the projected content is the <my-child> from the parent.

The telltale signs of *content projection* are twofold: * HTML between component element tags. * The
presence of `` tags in the component's template.

{@a aftercontent-hooks}

AfterContent hooks are similar to the AfterView hooks. The key difference is in the child component.

The AfterView hooks concern ViewChildren , the child components whose element tags appear within
the component's template.

The AfterContent hooks concern ContentChildren , the child components that Angular projected into
the component.

The following AfterContent hooks take action based on changing values in a content child, which can only be
reached by querying for them via the property decorated with @ContentChild.

{@a no-unidirectional-flow-worries}

AfterContent hooks

This component's doSomething() method update's the component's data-bound comment property
immediately. There's no need to wait.

Recall that Angular calls both AfterContent hooks before calling either of the AfterView hooks. Angular
completes composition of the projected content before finishing the composition of this component's view.
There is a small window between the AfterContent... and AfterView... hooks to modify the host
view.

No unidirectional flow worries with AfterContent

NgModules help organize an application into cohesive blocks of functionality.

The NgModules guide takes you step-by-step from the most elementary @NgModule class to a multi-faceted
sample with lazy-loaded modules.

This page answers the questions many developers ask about NgModule design and implementation.

These FAQs assume that you have read the [NgModules](guide/ngmodule) guide.

{@a q-what-to-declare}

Add declarable classes—components, directives, and pipes—to a declarations list.

Declare these classes in exactly one NgModule. Declare them in this NgModule if they belong to this module.

{@a q-declarable}

Declarables are the class types—components, directives, and pipes—that you can add to an NgModule's
declarations list. They're the only classes that you can add to declarations .

{@a q-what-not-to-declare}

Add only declarable classes to an NgModule's declarations list.

Do not declare the following:

A class that's already declared in another NgModule.
An array of directives imported from another NgModule. For example, don't declare FORMS_DIRECTIVES
from @angular/forms .
NgModule classes.

NgModule FAQs

What classes should I add to declarations?

What is a declarable?

What classes should I not add to declarations?

Service classes.
Non-Angular classes and objects, such as strings, numbers, functions, entity models, configurations, business
logic, and helper classes.

{@a q-why-multiple-mentions}

AppComponent is often listed in both declarations and bootstrap . You might see HeroComponent

listed in declarations , exports , and entryComponents .

While that seems redundant, these properties have different functions. Membership in one list doesn't imply
membership in another list.

AppComponent could be declared in this module but not bootstrapped.
AppComponent could be bootstrapped in this module but declared in a different feature module.
HeroComponent could be imported from another application module (so you can't declare it) and re-

exported by this module.
HeroComponent could be exported for inclusion in an external component's template as well as dynamically

loaded in a pop-up dialog.

{@a q-why-cant-bind-to}

This error often means that you haven't declared the directive "x" or haven't imported the NgModule to which "x"
belongs.

You also get this error if "x" really isn't a property or if "x" is a private component property (i.e., lacks the `@Input` or
`@Output` decorator).

For example, if "x" is ngModel , you may not have imported the FormsModule from @angular/forms .

Perhaps you declared "x" in an application feature module but forgot to export it? The "x" class isn't visible to other
components of other NgModules until you add it to the exports list.

Why list the same component in multiple @NgModule
properties?

What does "Can't bind to 'x' since it isn't a known property of
'y'" mean?

{@a q-what-to-import}

Import NgModules whose public (exported) declarable classes you need to reference in this module's component
templates.

This always means importing CommonModule from @angular/common for access to the Angular directives
such as NgIf and NgFor . You can import it directly or from another NgModule that re-exports it.

Import FormsModule from @angular/forms if your components have [(ngModel)] two-way binding
expressions.

Import shared and feature modules when this module's components incorporate their components, directives, and
pipes.

Import only BrowserModule in the root AppModule .

{@a q-browser-vs-common-module}

The root application module (AppModule) of almost every browser application should import BrowserModule

from @angular/platform-browser .

BrowserModule provides services that are essential to launch and run a browser app.

BrowserModule also re-exports CommonModule from @angular/common , which means that components
in the AppModule module also have access to the Angular directives every app needs, such as NgIf and
NgFor .

Do not import BrowserModule in any other NgModule. Feature modules and lazy-loaded modules should import
CommonModule instead. They need the common directives. They don't need to re-install the app-wide providers.

`BrowserModule` throws an error if you try to lazy load a module that imports it.

Importing CommonModule also frees feature modules for use on any target platform, not just browsers.

{@a q-reimport}

What should I import?

Should I import BrowserModule or CommonModule?

What if I import the same NgModule twice?

That's not a problem. When three NgModules all import Module 'A', Angular evaluates Module 'A' once, the first time
it encounters it, and doesn't do so again.

That's true at whatever level A appears in a hierarchy of imported NgModules. When Module 'B' imports Module
'A', Module 'C' imports 'B', and Module 'D' imports [C, B, A] , then 'D' triggers the evaluation of 'C', which
triggers the evaluation of 'B', which evaluates 'A'. When Angular gets to the 'B' and 'A' in 'D', they're already cached
and ready to go.

Angular doesn't like NgModules with circular references, so don't let Module 'A' import Module 'B', which imports
Module 'A'.

{@a q-what-to-export}

Export declarable classes that components in other NgModules are able to reference in their templates. These are
your public classes. If you don't export a class, it stays private, visible only to other component declared in this
NgModule.

You can export any declarable class—components, directives, and pipes—whether it's declared in this NgModule or
in an imported NgModule.

You can re-export entire imported NgModules, which effectively re-exports all of their exported classes. An
NgModule can even export a module that it doesn't import.

{@a q-what-not-to-export}

Don't export the following:

Private components, directives, and pipes that you need only within components declared in this NgModule. If
you don't want another NgModule to see it, don't export it.
Non-declarable objects such as services, functions, configurations, and entity models.
Components that are only loaded dynamically by the router or by bootstrapping. Such entry components can
never be selected in another component's template. While there's no harm in exporting them, there's also no
benefit.
Pure service modules that don't have public (exported) declarations. For example, there's no point in re-
exporting HttpModule because it doesn't export anything. It's only purpose is to add http service providers
to the application as a whole.

What should I export?

What should I not export?

{@a q-reexport} {@a q-re-export}

Absolutely.

NgModules are a great way to selectively aggregate classes from other NgModules and re-export them in a
consolidated, convenience module.

An NgModule can re-export entire NgModules, which effectively re-exports all of their exported classes. Angular's
own BrowserModule exports a couple of NgModules like this:

exports: [CommonModule, ApplicationModule]

An NgModule can export a combination of its own declarations, selected imported classes, and imported
NgModules.

Don't bother re-exporting pure service modules. Pure service modules don't export [declarable](guide/ngmodule-
faq#q-declarable) classes that another NgModule could use. For example, there's no point in re-exporting
`HttpModule` because it doesn't export anything. It's only purpose is to add http service providers to the application
as a whole.

{@a q-for-root}

The forRoot static method is a convention that makes it easy for developers to configure the module's
providers.

The RouterModule.forRoot method is a good example. Apps pass a Routes object to
RouterModule.forRoot in order to configure the app-wide Router service with routes.
RouterModule.forRoot returns a ModuleWithProviders. You add that result to the imports list of the root
AppModule .

Only call and import a `.forRoot` result in the root application NgModule, `AppModule`. Importing it in any other
NgModule, particularly in a lazy-loaded NgModule, is contrary to the intent and will likely produce a runtime error.

RouterModule also offers a forChild static method for configuring the routes of lazy-loaded modules.

forRoot and forChild are conventional names for methods that configure services in root and feature modules
respectively.

Can I re-export classes and NgModules?

What is the forRoot method?

Angular doesn't recognize these names but Angular developers do. Follow this convention when you write similar
modules with configurable service providers.

{@a q-module-provider-visibility}

Providers listed in the @NgModule.providers of a bootstrapped module have application scope. Adding a
service provider to @NgModule.providers effectively publishes the service to the entire application.

When you import an NgModule, Angular adds the module's service providers (the contents of its providers list)
to the application root injector.

This makes the provider visible to every class in the application that knows the provider's lookup token.

This is by design. Extensibility through NgModule imports is a primary goal of the NgModule system. Merging
NgModule providers into the application injector makes it easy for a module library to enrich the entire application
with new services. By adding the HttpModule once, every application component can make http requests.

However, this might feel like an unwelcome surprise if you expect the module's services to be visible only to the
components declared by that feature module. If the HeroModule provides the HeroService and the root
AppModule imports HeroModule , any class that knows the HeroService type can inject that service, not

just the classes declared in the HeroModule .

{@a q-lazy-loaded-module-provider-visibility}

Unlike providers of the NgModules loaded at launch, providers of lazy-loaded modules are module-scoped.

When the Angular router lazy-loads a module, it creates a new execution context. That context has its own injector,
which is a direct child of the application injector.

The router adds the lazy module's providers and the providers of its imported NgModules to this child injector.

These providers are insulated from changes to application providers with the same lookup token. When the router
creates a component within the lazy-loaded context, Angular prefers service instances created from these providers

Why is a service provided in a feature module visible
everywhere?

Why is a service provided in a lazy-loaded NgModule visible
only to that module?

to the service instances of the application root injector.

{@a q-module-provider-duplicates}

When two imported NgModules, loaded at the same time, list a provider with the same token, the second module's
provider "wins". That's because both providers are added to the same injector.

When Angular looks to inject a service for that token, it creates and delivers the instance created by the second
provider.

Every class that injects this service gets the instance created by the second provider. Even classes declared within
the first module get the instance created by the second provider.

If NgModule A provides a service for token 'X' and imports an NgModule B that also provides a service for token 'X',
then NgModule A's service definition "wins".

The service provided by the root AppModule takes precedence over services provided by imported NgModules.
The AppModule always wins.

{@a q-component-scoped-providers}

When an NgModule is loaded at application launch, its @NgModule.providers have application-wide scope;
that is, they are available for injection throughout the application.

Imported providers are easily replaced by providers from another imported NgModule. Such replacement might be
by design. It could be unintentional and have adverse consequences.

As a general rule, import NgModules with providers _exactly once_, preferably in the application's _root module_.
That's also usually the best place to configure, wrap, and override them.

Suppose an NgModule requires a customized HttpBackend that adds a special header for all Http requests. If
another NgModule elsewhere in the application also customizes HttpBackend or merely imports the
HttpModule , it could override this module's HttpBackend provider, losing the special header. The server will

reject http requests from this module.

To avoid this problem, import the HttpModule only in the AppModule , the application root module.

If you must guard against this kind of "provider corruption", don't rely on a launch-time module's providers .

What if two NgModules provide the same service?

How do I restrict service scope to an NgModule?

Load the module lazily if you can. Angular gives a lazy-loaded module its own child injector. The module's providers
are visible only within the component tree created with this injector.

If you must load the module eagerly, when the application starts, provide the service in a component instead.

Continuing with the same example, suppose the components of a module truly require a private, custom
HttpBackend .

Create a "top component" that acts as the root for all of the module's components. Add the custom
HttpBackend provider to the top component's providers list rather than the module's providers .

Recall that Angular creates a child injector for each component instance and populates the injector with the
component's own providers.

When a child of this component asks for the HttpBackend service, Angular provides the local HttpBackend

service, not the version provided in the application root injector. Child components make proper HTTP requests no
matter what other NgModules do to HttpBackend .

Be sure to create module components as children of this module's top component.

You can embed the child components in the top component's template. Alternatively, make the top component a
routing host by giving it a <router-outlet> . Define child routes and let the router load module components
into that outlet.

{@a q-root-component-or-module}

Register application-wide providers in the root AppModule , not in the AppComponent .

Lazy-loaded modules and their components can inject AppModule services; they can't inject AppComponent

services.

Register a service in AppComponent providers only if the service must be hidden from components outside the
AppComponent tree. This is a rare use case.

More generally, prefer registering providers in NgModules to registering in components.

Angular registers all startup NgModule providers with the application root injector. The services created from root

Should I add application-wide providers to the root AppModule
or the root AppComponent?

Discussion

injector providers are available to the entire application. They are application-scoped.

Certain services (such as the Router) only work when registered in the application root injector.

By contrast, Angular registers AppComponent providers with the AppComponent 's own injector.
AppComponent services are available only to that component and its component tree. They are component-

scoped.

The AppComponent 's injector is a child of the root injector, one down in the injector hierarchy. For applications
that don't use the router, that's almost the entire application. But for routed applications, "almost" isn't good enough.

AppComponent services don't exist at the root level where routing operates. Lazy-loaded modules can't reach
them. In the NgModules sample application, if you had registered UserService in the AppComponent , the
HeroComponent couldn't inject it. The application would fail the moment a user navigated to "Heroes".

{@a q-component-or-module}

In general, prefer registering feature-specific providers in NgModules (@NgModule.providers) to registering in
components (@Component.providers).

Register a provider with a component when you must limit the scope of a service instance to that component and its
component tree. Apply the same reasoning to registering a provider with a directive.

For example, a hero editing component that needs a private copy of a caching hero service should register the
HeroService with the HeroEditorComponent . Then each new instance of the HeroEditorComponent

gets its own cached service instance. The changes that editor makes to heroes in its service don't touch the hero
instances elsewhere in the application.

Always register application-wide services with the root AppModule , not the root AppComponent .

{@a q-why-bad}

This question is addressed in the Why UserService isn't shared section of the NgModules guide, which discusses
the importance of keeping providers out of the SharedModule .

Should I add other providers to an NgModule or a component?

Why is it bad if SharedModule provides a service to a lazy-
loaded NgModule?

Suppose the UserService was listed in the NgModule's providers (which it isn't). Suppose every
NgModule imports this SharedModule (which they all do).

When the app starts, Angular eagerly loads the AppModule and the ContactModule .

Both instances of the imported SharedModule would provide the UserService . Angular registers one of
them in the root app injector (see What if I import the same NgModule twice?). Then some component injects
UserService , Angular finds it in the app root injector, and delivers the app-wide singleton UserService . No

problem.

Now consider the HeroModule which is lazy-loaded.

When the router lazy loads the HeroModule , it creates a child injector and registers the UserService

provider with that child injector. The child injector is not the root injector.

When Angular creates a lazy HeroComponent , it must inject a UserService . This time it finds a
UserService provider in the lazy module's child injector and creates a new instance of the UserService .

This is an entirely different UserService instance than the app-wide singleton version that Angular injected in
one of the eagerly loaded components.

That's almost certainly a mistake.

To demonstrate, run the live example. Modify the `SharedModule` so that it provides the `UserService` rather than
the `CoreModule`. Then toggle between the "Contact" and "Heroes" links a few times. The username flashes
irregularly as the Angular creates a new `UserService` instance each time.

{@a q-why-child-injector}

Angular adds @NgModule.providers to the application root injector, unless the NgModule is lazy-loaded. For a
lazy-loaded NgModule, Angular creates a child injector and adds the module's providers to the child injector.

This means that an NgModule behaves differently depending on whether it's loaded during application start or lazy-
loaded later. Neglecting that difference can lead to adverse consequences.

Why doesn't Angular add lazy-loaded providers to the app root injector as it does for eagerly loaded NgModules?

The answer is grounded in a fundamental characteristic of the Angular dependency-injection system. An injector can
add providers until it's first used. Once an injector starts creating and delivering services, its provider list is frozen; no
new providers are allowed.

When an applications starts, Angular first configures the root injector with the providers of all eagerly loaded

Why does lazy loading create a child injector?

NgModules before creating its first component and injecting any of the provided services. Once the application
begins, the app root injector is closed to new providers.

Time passes and application logic triggers lazy loading of an NgModule. Angular must add the lazy-loaded module's
providers to an injector somewhere. It can't add them to the app root injector because that injector is closed to new
providers. So Angular creates a new child injector for the lazy-loaded module context.

{@a q-is-it-loaded}

Some NgModules and their services should be loaded only once by the root AppModule . Importing the module a
second time by lazy loading a module could produce errant behavior that may be difficult to detect and diagnose.

To prevent this issue, write a constructor that attempts to inject the module or service from the root app injector. If
the injection succeeds, the class has been loaded a second time. You can throw an error or take other remedial
action.

Certain NgModules (such as BrowserModule) implement such a guard, such as this CoreModule

constructor.

{@a q-entry-component-defined}

An entry component is any component that Angular loads imperatively by type.

A component loaded declaratively via its selector is not an entry component.

Most application components are loaded declaratively. Angular uses the component's selector to locate the element
in the template. It then creates the HTML representation of the component and inserts it into the DOM at the
selected element. These aren't entry components.

A few components are only loaded dynamically and are never referenced in a component template.

The bootstrapped root AppComponent is an entry component. True, its selector matches an element tag in
index.html . But index.html isn't a component template and the AppComponent selector doesn't match

an element in any component template.

How can I tell if an NgModule or service was previously
loaded?

What is an entry component?

Angular loads AppComponent dynamically because it's either listed by type in @NgModule.bootstrap or
bootstrapped imperatively with the NgModule's ngDoBootstrap method.

Components in route definitions are also entry components. A route definition refers to a component by its type. The
router ignores a routed component's selector (if it even has one) and loads the component dynamically into a
RouterOutlet .

The compiler can't discover these entry components by looking for them in other component templates. You must
tell it about them by adding them to the entryComponents list.

Angular automatically adds the following types of components to the NgModule's entryComponents :

The component in the @NgModule.bootstrap list.
Components referenced in router configuration.

You don't have to mention these components explicitly, although doing so is harmless.

{@a q-bootstrapvsentry_component}

A bootstrapped component is an entry component that Angular loads into the DOM during the bootstrap (application
launch) process. Other entry components are loaded dynamically by other means, such as with the router.

The @NgModule.bootstrap property tells the compiler that this is an entry component and it should generate
code to bootstrap the application with this component.

There's no need to list a component in both the bootstrap and entryComponent lists, although doing so is
harmless.

{@a q-when-entry-components}

Most application developers won't need to add components to the entryComponents .

Angular adds certain components to entry components automatically. Components listed in
@NgModule.bootstrap are added automatically. Components referenced in router configuration are added

automatically. These two mechanisms account for almost all entry components.

What's the difference between a bootstrap component and an
entry component?

When do I add components to entryComponents?

If your app happens to bootstrap or dynamically load a component by type in some other manner, you must add it to
entryComponents explicitly.

Although it's harmless to add components to this list, it's best to add only the components that are truly entry
components. Don't include components that are referenced in the templates of other components.

{@a q-why-entry-components}

Entry components are also declared. Why doesn't the Angular compiler generate code for every component in
@NgModule.declarations ? Then you wouldn't need entry components.

The reason is tree shaking. For production apps you want to load the smallest, fastest code possible. The code
should contain only the classes that you actually need. It should exclude a component that's never used, whether or
not that component is declared.

In fact, many libraries declare and export components you'll never use. If you don't reference them, the tree shaker
drops these components from the final code package.

If the Angular compiler generated code for every declared component, it would defeat the purpose of the tree
shaker.

Instead, the compiler adopts a recursive strategy that generates code only for the components you use.

The compiler starts with the entry components, then it generates code for the declared components it finds in an
entry component's template, then for the declared components it discovers in the templates of previously compiled
components, and so on. At the end of the process, the compiler has generated code for every entry component and
every component reachable from an entry component.

If a component isn't an entry component or wasn't found in a template, the compiler omits it.

{@a q-module-recommendations}

Every app is different. Developers have various levels of experience and comfort with the available choices. The
following suggestions and guidelines have wide appeal.

Why does Angular need entryComponents?

What kinds of NgModules should I have and how should I use
them?

Create a SharedModule with the components, directives, and pipes that you use everywhere in your app. This
NgModule should consist entirely of declarations , most of them exported.

The SharedModule may re-export other widget modules, such as CommonModule , FormsModule , and
NgModules with the UI controls that you use most widely.

The SharedModule should not have providers for reasons explained previously. Nor should any of its
imported or re-exported NgModules have providers . If you deviate from this guideline, know what you're doing
and why.

Import the SharedModule in your feature modules, both those loaded when the app starts and those you lazy
load later.

Create a CoreModule with providers for the singleton services you load when the application starts.

Import CoreModule in the root AppModule only. Never import CoreModule in any other module.

Consider making CoreModule a pure services module with no declarations .

This page sample departs from that advice by declaring and exporting two components that are only used within the
root `AppComponent` declared by `AppModule`. Someone following this guideline strictly would have declared these
components in the `AppModule` instead.

Create feature modules around specific application business domains, user workflows, and utility collections.

Feature modules tend to fall into one of the following groups:

Domain feature modules.
Routed feature modules.
Routing modules.
Service feature modules.
Widget feature modules.

Real-world NgModules are often hybrids that purposefully deviate from the following guidelines. These guidelines
are not laws; follow them unless you have a good reason to do otherwise.

Feature
Module

Guidelines

SharedModule

CoreModule

Feature Modules

{@a domain-
feature-
module}Domain

Domain feature modules deliver a user experience *dedicated to a particular application
domain* like editing a customer or placing an order. They typically have a top component
that acts as the feature root. Private, supporting sub-components descend from it. Domain
feature modules consist mostly of _declarations_. Only the top component is exported.
Domain feature modules rarely have _providers_. When they do, the lifetime of the
provided services should be the same as the lifetime of the module. Don't provide
application-wide singleton services in a domain feature module. Domain feature modules
are typically imported _exactly once_ by a larger feature module. They might be imported
by the root `AppModule` of a small application that lacks routing.
For an example, see the [Feature Modules](guide/ngmodule#contact-module-v1) section of
the [NgModules](guide/ngmodule) guide, before routing is introduced.

{@a routed-
feature-
module}Routed

Routed feature modules are _domain feature modules_ whose top components are the
targets of router navigation routes. All lazy-loaded modules are routed feature modules by
definition. This page's `ContactModule`, `HeroModule`, and `CrisisModule` are routed
feature modules. Routed feature modules _shouldn't export anything_. They don't have to
because their components never appear in the template of an external component. A lazy-
loaded routed feature module should _not be imported_ by any NgModule. Doing so would
trigger an eager load, defeating the purpose of lazy loading. `HeroModule` and
`CrisisModule` are lazy-loaded. They aren't mentioned among the `AppModule` imports.
But an eagerly loaded, routed feature module must be imported by another NgModule so
that the compiler learns about its components. `ContactModule` is eager loaded and
therefore listed among the `AppModule` imports. Routed Feature Modules rarely have
providers for reasons [explained earlier](guide/ngmodule-faq#q-why-bad). When they do,
the lifetime of the provided services should be the same as the lifetime of the NgModule.
Don't provide application-wide singleton services in a routed feature module or in an
NgModule that the routed module imports.

{@a routing-
module}Routing

A [routing module](guide/router#routing-module) *provides routing configuration* for
another NgModule. A routing module separates routing concerns from its companion
module. A routing module typically does the following: * Defines routes. * Adds router
configuration to the module's `imports`. * Re-exports `RouterModule`. * Adds guard and
resolver service providers to the module's `providers`. The name of the routing module
should parallel the name of its companion module, using the suffix "Routing". For example,
`FooModule` in `foo.module.ts` has a routing module named `FooRoutingModule` in `foo-
routing.module.ts` If the companion module is the _root_ `AppModule`, the
`AppRoutingModule` adds router configuration to its `imports` with
`RouterModule.forRoot(routes)`. All other routing modules are children that import
`RouterModule.forChild(routes)`. A routing module re-exports the `RouterModule` as a
convenience so that components of the companion module have access to router directives
such as `RouterLink` and `RouterOutlet`. A routing module *should not have its own

`declarations`*. Components, directives, and pipes are the *responsibility of the feature
module*, not the _routing_ module. A routing module should _only_ be imported by its
companion module. The `AppRoutingModule`, `ContactRoutingModule`, and
`HeroRoutingModule` are good examples.
See also [Do you need a _Routing Module_?](guide/router#why-routing-module) on the
[Routing & Navigation](guide/router) page.

{@a service-
feature-
module}Service

Service modules *provide utility services* such as data access and messaging. Ideally, they
consist entirely of _providers_ and have no _declarations_. The `CoreModule` and
Angular's `HttpModule` are good examples. Service Modules should _only_ be imported by
the root `AppModule`. Do *not* import service modules in other feature modules. If you
deviate from this guideline, know what you're doing and why.

{@a widget-
feature-
module}Widget

A widget module makes *components, directives, and pipes* available to external
NgModules. `CommonModule` and `SharedModule` are widget modules. Many third-party
UI component libraries are widget modules. A widget module should consist entirely of
declarations, most of them exported. A widget module should rarely have _providers_. If
you deviate from this guideline, know what you're doing and why. Import widget modules in
any module whose component templates need the widgets.

The following table summarizes the key characteristics of each feature module group.

Real-world NgModules are often hybrids that knowingly deviate from these guidelines.

Feature
Module

Declarations Providers Exports Imported By Examples

Domain Yes Rare Top component
Feature,
AppModule

ContactModule (before
routing)

Routed Yes Rare No Nobody
ContactModule ,
HeroModule ,
CrisisModule

Routing No
Yes
(Guards)

RouterModule
Feature (for
routing)

AppRoutingModule ,
ContactRoutingModule ,
HeroRoutingModule

Service No Yes No AppModule
HttpModule ,
CoreModule

Widget Yes Rare Yes Feature
CommonModule ,
SharedModule

{@a q-ng-vs-js-modules}

Angular and JavaScript are different yet complementary module systems.

In modern JavaScript, every file is a module (see the Modules page of the Exploring ES6 website). Within each file
you write an export statement to make parts of the module public:

export class AppComponent { ... }

Then you import a part in another module:

import { AppComponent } from './app.component';

This kind of modularity is a feature of the JavaScript language.

An NgModule is a feature of Angular itself.

Angular's @NgModule metadata also have imports and exports and they serve a similar purpose.

You import other NgModules so you can use their exported classes in component templates. You export this
NgModule's classes so they can be imported and used by components of other NgModules.

The NgModule classes differ from JavaScript module class in the following key ways:

An NgModule bounds declarable classes only. Declarables are the only classes that matter to the Angular
compiler.
Instead of defining all member classes in one giant file (as in a JavaScript module), you list the NgModule's
classes in the @NgModule.declarations list.
An NgModule can only export the declarable classes it owns or imports from other NgModules. It doesn't
declare or export any other kind of class.

The NgModule is also special in another way. Unlike JavaScript modules, an NgModule can extend the entire
application with services by adding providers to the @NgModule.providers list.

The provided services don't belong to the NgModule nor are they scoped to the declared classes. They are available
everywhere.

Here's an @NgModule class with imports, exports, and declarations.

Of course you use JavaScript modules to write NgModules as seen in the complete contact.module.ts file:

What's the difference between Angular NgModules and
JavaScript Modules?

{@a q-template-reference}

The Angular compiler looks inside component templates for other components, directives, and pipes. When it finds
one, that's a "template reference".

The Angular compiler finds a component or directive in a template when it can match the selector of that component
or directive to some HTML in that template.

The compiler finds a pipe if the pipe's name appears within the pipe syntax of the template HTML.

Angular only matches selectors and pipe names for classes that are declared by this NgModule or exported by an
NgModule that this one imports.

{@a q-angular-compiler}

The Angular compiler converts the application code you write into highly performant JavaScript code. The
@NgModule metadata play an important role in guiding the compilation process.

The code you write isn't immediately executable. Consider components. Components have templates that contain
custom elements, attribute directives, Angular binding declarations, and some peculiar syntax that clearly isn't native
HTML.

The Angular compiler reads the template markup, combines it with the corresponding component class code, and
emits component factories.

A component factory creates a pure, 100% JavaScript representation of the component that incorporates everything
described in its @Component metadata: the HTML, the binding instructions, the attached styles.

Because directives and pipes appear in component templates, the Angular compiler incorporates them into compiled
component code too.

@NgModule metadata tells the Angular compiler what components to compile for this module and how to link this
module with other NgModules.

How does Angular find components, directives, and pipes in a
template?
What is a template reference?

What is the Angular compiler?

{@a q-ngmodule-api}

The following table summarizes the @NgModule metadata properties.

Property Description

declarations A list of [declarable](guide/ngmodule-faq#q-declarable) classes, the *component*,
directive, and *pipe* classes that _belong to this NgModule_. These declared
classes are visible within the NgModule but invisible to components in a different
NgModule unless they are _exported_ from this NgModule and the other NgModule
imports this one. Components, directives, and pipes must belong to _exactly_ one
NgModule. The compiler emits an error if you try to declare the same class in more
than one NgModule. *Do not re-declare a class imported from another NgModule.*

providers A list of dependency-injection providers. Angular registers these providers with the
root injector of the NgModule's execution context. That's the application's root
injector for all NgModules loaded when the application starts. Angular can inject one
of these provider services into any component in the application. If this NgModule or
any NgModule loaded at launch provides the `HeroService`, Angular can inject the
same `HeroService` intance into any app component. A lazy-loaded NgModule has
its own sub-root injector which typically is a direct child of the application root
injector. Lazy-loaded services are scoped to the lazy module's injector. If a lazy-
loaded NgModule also provides the `HeroService`, any component created within
that module's context (such as by router navigation) gets the local instance of the
service, not the instance in the root application injector. Components in external
NgModules continue to receive the instance created for the application root.

imports A list of supporting NgModules. Specifically, the list of NgModules whose exported
components, directives, or pipes are referenced by the component templates
declared in this NgModule. A component template can [reference](guide/ngmodule-
faq#q-template-reference) another component, directive, or pipe when the
referenced class is declared in this module or the class was imported from another
module. A component can use the `NgIf` and `NgFor` directives only because its
declaring NgModule imported the Angular `CommonModule` (perhaps indirectly by
importing `BrowserModule`). You can import many standard directives with the
`CommonModule` but some familiar directives belong to other NgModules. A
component template can bind with `[(ngModel)]` only after importing the Angular
`FormsModule`.

@NgModule API

exports A list of declarations—*component*, *directive*, and *pipe* classes—that an
importing NgModule can use. Exported declarations are the module's _public API_.
A component in another NgModule can [reference](guide/ngmodule-faq#q-template-
reference) _this_ NgModule's `HeroComponent` if it imports this module and this
module exports `HeroComponent`. Declarations are private by default. If this
NgModule does _not_ export `HeroComponent`, no other NgModule can see it.
Importing an NgModule does _not_ automatically re-export the imported NgModule's
imports. NgModule 'B' can't use `ngIf` just because it imported NgModule `A` which
imported `CommonModule`. NgModule 'B' must import `CommonModule` itself. An
NgModule can list another NgModule among its `exports`, in which case all of that
NgModule's public components, directives, and pipes are exported. [Re-export]
(guide/ngmodule-faq#q-re-export) makes NgModule transitivity explicit. If NgModule
'A' re-exports `CommonModule` and NgModule 'B' imports NgModule 'A', NgModule
'B' components can use `ngIf` even though 'B' itself didn't import `CommonModule`.

bootstrap A list of components that can be bootstrapped. Usually there's only one component
in this list, the _root component_ of the application. Angular can launch with multiple
bootstrap components, each with its own location in the host web page. A bootstrap
component is automatically an `entryComponent`.

entryComponents A list of components that are _not_ [referenced](guide/ngmodule-faq#q-template-
reference) in a reachable component template. Most developers never set this
property. The [Angular compiler](guide/ngmodule-faq#q-angular-compiler) must
know about every component actually used in the application. The compiler can
discover most components by walking the tree of references from one component
template to another. But there's always at least one component that's not referenced
in any template: the root component, `AppComponent`, that you bootstrap to launch
the app. That's why it's called an _entry component_. Routed components are also
entry components because they aren't referenced in a template either. The router
creates them and drops them into the DOM near a ``. While the bootstrapped and
routed components are _entry components_, you usually don't have to add them to
a module's `entryComponents` list. Angular automatically adds components in the
module's `bootstrap` list to the `entryComponents` list. The `RouterModule` adds
routed components to that list. That leaves only the following sources of
undiscoverable components: * Components bootstrapped using one of the
imperative techniques. * Components dynamically loaded into the DOM by some
means other than the router. Both are advanced techniques that few developers
ever employ. If you are one of those few, you must add these components to the
`entryComponents` list yourself, either programmatically or by hand.

NgModules help organize an application into cohesive blocks of functionality.

An NgModule is a class adorned with the @NgModule decorator function. @NgModule takes a metadata
object that tells Angular how to compile and your code. It identifies the module's own components, directives,
and pipes, making some of them public so external components can use them. @NgModule may add service
providers to the application dependency injectors. And there are many more options covered here.

{@a bootstrap}

For a quick overview of NgModules, consider reading the Bootstrapping guide, which introduces NgModules
and the essentials of creating and maintaining a single root AppModule for the entire application.

This page covers NgModules in greater depth.

This page explains NgModules through a progression of improvements to a sample with a "Heroes" theme.
Here's an index to live examples at key moments in the evolution of the sample:

The initial app
The first contact module
The revised contact module
Just before adding SharedModule
The final version

This page covers NgModule concepts in a tutorial fashion.

The companion NgModule FAQs guide offers answers to specific design and implementation questions. Read
this page before reading those FAQs.

{@a angular-modularity}

NgModules

Live examples

Frequently asked questions (FAQs)

Angular modularity

NgModules are a great way to organize an application and extend it with capabilities from external libraries.

Many Angular libraries are NgModules (such as FormsModule , HttpModule , and RouterModule).
Many third-party libraries are available as NgModules (such as Material Design, Ionic, AngularFire2).

NgModules consolidate components, directives, and pipes into cohesive blocks of functionality, each focused
on a feature area, application business domain, workflow, or common collection of utilities.

NgModules can also add services to the application. Such services might be internally developed, such as the
application logger. Services can come from outside sources, such as the Angular router and Http client.

NgModules can be loaded eagerly when the application starts. They can also be lazy-loaded asynchronously
by the router.

An NgModule is a class decorated with @NgModule metadata. By setting metadata properties you tell
Angular how your application parts fit together. For example, you can do the following:

Declare which components, directives, and pipes belong to the NgModule.
Export some of those classes so that other component templates can use them.
Import other NgModules with the components, directives, and pipes needed by the components in this
NgModule.
Provide services at the application level that any application component can use.
Bootstrap the app with one or more top-level, root components.

{@a root-module}

Every Angular app has at least one NgModule class, the root module. You bootstrap that NgModule to launch
the application.

By convention, the root module class is called AppModule and it exists in a file named app.module.ts .
The Angular CLI generates the initial AppModule for you when you create a project.

ng new quickstart

The root AppModule is all you need in a simple application with a few components.

As the app grows, you may refactor the root AppModule into feature modules that represent collections of
related functionality. For now, stick with the root AppModule created by the CLI.

The initial declarations array identifies the application's only component, AppComponent , the root

The root AppModule

component at the top of the app's component tree.

Soon you'll declare more components (and directives and pipes too).

The @NgModule metadata imports a single helper module, BrowserModule , which every browser
app must import. BrowserModule registers critical application service providers. It also includes common
directives like NgIf and NgFor , which become immediately visible and usable in any of this NgModule's
component templates.

The providers array registers services with the top-level dependency injector. There are no services to
register ... yet.

Lastly, the bootstrap list identifies the AppComponent as the bootstrap component. When Angular
launches the app, it renders the AppComponent inside the <app-root> element tag of the
index.html .

Learn about that in the bootstrapping guide.

The CLI-generated `AppComponent` in this guide's sample has been simplified and consolidated into a single
`app.component.ts` file like this:

Run the app and follow along with the steps in this guide:

ng serve

{@a declarations} {@a declare-directive}

{@a declarables}

As the app evolves, you'll add directives, components, and pipes (the declarables). You must declare each of
these classes in an NgModule.

As an exercise, begin by adding a highlight.directive.ts to the src/app/ folder by hand.

The HighlightDirective is an attribute directive that sets the background color of its host element.
Update the AppComponent template to attach this directive to the <h1> title element:

The screen of the running app has not changed. The <h1> is not highlighted. Angular does not yet
recognize the highlight attribute and is ignoring it. You must declare the HighlightDirective in
AppModule .

Declare directives

Edit the app.module.ts file, import the HighlightDirective , and add it to the AppModule

declarations like this:

The Angular CLI would have done all of this for you if you'd created the HighlightDirective with the CLI
command like this:

ng generate directive highlight

But you didn't. You created the file by hand so you must declare the directive by hand.

{@a declare-component}

Now add a TitleComponent to the app and this time create it with the CLI.

ng generate component title --flat --no-spec --inline-style

The `--flat` flag tells the CLI to generate all files to the `src/app/` folder.
The `--no-spec` flag skips the test (`.spec`) file.
The `--inline-style` flag prevents generation of the `.css` file (which you won't need).
To see which files would be created or changed by any `ng generate` command, append the `--dryRun` flag (`-
d` for short).

Open the AppModule and look at the declarations where you will see that the CLI added the
TitleComponent for you.

Now rewrite the title.component.html like this.

And move the title property from app.component.ts into the title.component.ts , which
looks as follows after a little cleanup.

Rewrite AppComponent to display the new TitleComponent in the <app-title> element and get
rid of the title property.

There was no visible clue when you neglected to declare the HighlightDirective attribute directive. The
Angular compiler doesn't recognize highlight as an <h1> attribute but it doesn't complain either. You'd
discover it was undeclared only if you were looking for its effect.

Now try removing the declaration of the TitleComponent from AppModule .

Declare components

Error if component not declared

The Angular compiler behaves differently when it encounters an unrecognized HTML element. The app ceases
to display the page and the browser console logs the following error

Uncaught Error: Template parse errors: 'app-title' is not a known element: 1. If 'app-title' is an Angular
component, then verify that it is part of this NgModule. 2. If 'app-title' is a Web Component then add
'CUSTOMELEMENTSSCHEMA' to the '@NgModule.schemas' of this component to suppress this message.

If you don't get that error, you might get this one: Uncaught Error: Component TitleComponent is not part of any
NgModule or the module has not been imported into your module.

Always declare your components, directives, and pipes.

{@a providers}

The Dependency Injection page describes the Angular hierarchical dependency-injection system and how to
configure that system with providers.

An NgModule can provide services. A single instance of each provided service becomes available for injection
into every class created with that NgModule's injector (or one of its descendant injectors).

When Angular boots the application, it creates the root AppModule with a root dependency injector. Angular
configures the root injector with the providers specified in the module's @NgModule.providers .

Later, when Angular creates a new instance of a class— be it a component, directive, service, or module— that
new class can be injected with an instance of a service provided to the root injector by the AppModule .

Angular also configures the root injector with the providers specified by [imported NgModules](#imports). An
NgModule's own providers are registered _after_ imported NgModule providers. When there are multiple
providers for the same injection token, the last registration wins.

Providing a service in @Component.providers metadata means that a new service instance will be
created for each new instance of that component and will be available for injection into all of that component
instance's descendant sub-components.

The service instance won't be injected into any other component instances. Other instances of the same

Service providers

NgModule providers

Compared to Component providers

component class cannot see it. Sibling and ancestor component instances cannot see it.

Component providers always supersede NgModule providers. A component provider for injection token X

creates a new service instance that "shadows" an NgModule provider for injection token X . When the
component or any of its sub-components inject X , they get the component service instance, not the
NgModule service instance.

Should you provide a service in an NgModule or a component? The answer depends on how you want to
scope the service. If the service should be widely available, provide it in an NgModule. If it should be visible
only within a component tree, provide it in the component at the root of that tree.

Many applications capture information about the currently logged-in user and make that information accessible
through a user service.

Use the CLI to create a UserService and provide it in the root AppModule .

ng generate service user --module=app

This command creates a skeleton UserService in src/app/user.service.ts and a companion test
file, src/app/user.service.spec.ts .

The --module=app flag tells the CLI to provide the service class in the NgModule defined in the
src/app/app.module.ts file.

If you omit the --module flag, the CLI still creates the service but does not provide it anywhere. You have to
do that yourself.

Confirm that the --module=app flag did provide the service in the root AppModule by inspecting the
@NgModule.providers array in src/app/app.module.ts

Replace the generated contents of src/app/user.service.ts with the following dummy
implementation.

Update the TitleComponent class with a constructor that injects the UserService and sets the
component's user property from the service.

Update the TitleComponent template to show the welcome message below the application title.

{@a imports}

NgModule provider example

In the revised TitleComponent , an *ngIf directive guards the message. There is no message if there
is no user.

Although AppModule doesn't declare the NgIf directive, the application still compiles and runs. How can
that be? The Angular compiler should either ignore or complain about unrecognized HTML.

Angular does recognize NgIf because the AppModule imports it indirectly when it imports
BrowserModule .

Importing BrowserModule made all of its public components, directives, and pipes visible to the templates
of components declared in AppModule , which include TitleComponent .

{@a reexport}

The NgIf directive isn't declared in BrowserModule . It's declared in CommonModule from
@angular/common .

CommonModule contributes many of the common directives that applications need, including ngIf and
ngFor .

AppModule doesn't import CommonModule directly. But it benefits from the fact that BrowserModule

imports CommonModule and re-exports it.

The net effect is that an importer of BrowserModule gets CommonModule directives automatically as if it
had declared them itself.

Many familiar Angular directives don't belong to CommonModule . For example, NgModel and
RouterLink belong to Angular's FormsModule and RouterModule respectively. You must import

those NgModules before you can use their directives.

To illustrate this point, you'll extend the sample app with contact editor whose ContactComponent is a form
component. You'll have to import form support from the Angular FormsModule .

{@a add-contact-editor}

NgModule imports

Importing BrowserModule

Re-exported NgModules

Imagine that you added the following contact editor files to the project by hand without the help of the CLI.

Form components are often complex and this is one is no exception. To make it manageable, all contact-
related files are in an `src/app/contact` folder. The `ContactComponent` implementation is spread over three
constituent HTML, TypeScript, and css files. There's a [custom pipe](guide/pipes#custom-pipes) (called
`Awesome`), a `ContactHighlightDirective`, and a `ContactService` for fetching contacts. The `ContactService`
was added to the `AppModule` providers. Now any class can inject the application-wide instances of the
`ContactService` and `UserService`.

The ContactComponent is written with Angular forms in the template-driven style.

Notice the [(ngModel)] binding in the middle of the component template,
contact.component.html .

Two-way data binding [(ngModel)] is typical of the template-driven style. The ngModel is the selector
for the NgModel directive. Although NgModel is an Angular directive, the Angular compiler won't
recognize it for two reasons:

1. AppModule doesn't declare NgModel (and shouldn't).
2. NgModel wasn't imported via BrowserModule .

ContactComponent wouldn't behave like an Angular form anyway because form features such as
validation aren't part of the Angular core.

To correct these problems, the AppModule must import both the BrowserModule and the
FormsModule from '@angular/forms' like this.

You can write Angular form components in template-driven or [reactive](guide/reactive-forms) style. NgModules
with components written in the _reactive_ style import the `ReactiveFormsModule`.

Now [(ngModel)] binding will work and the user input will be validated by Angular forms, once you declare
the new component, pipe, and directive.

Importing the FormsModule makes the NgModelDirective (and all of the other
FORMS_DIRECTIVES) available to components declared in AppModule .

Add a contact editor

Import supporting FormsModule

Never re-declare

Do not also add these directives to the AppModule metadata's declarations.

Never re-declare classes that belong to another NgModule. Components, directives, and pipes should be
declared in _exactly one NgModule_.

{@a declare-pipe}

The revised application still won't compile until you declare the contact component, directive, and pipe.

Components and directives are declarables. So are pipes.

You learned earlier to generate and declare both components and directives with the CLI ng generate

commands.

There's also a CLI command to generate and declare the AwesomePipe :

ng generate pipe awesome

However, if you write these class files by hand or opt-out of declaration with the --skip-import flag, you'll
have to add the declarations yourself.

You were told to add the contact editor files by hand, so you must manually update the declarations in
the AppModule :

Update the AppComponent template to display the ContactComponent by placing an element with its
selector (<app-contact>) just below the title.

Everything is in place to run the application with its contact editor. Try the example: ## Selector conflicts Look
closely at the screen. Notice that the background of the application title text is _blue_. It should be _gold_ (see
`src/app/app.component.html`). Only the contact name should be blue (see
`src/app/contact/contact.component.html`). What went wrong? This application defines two highlight directives
that set the background color of their host elements with a different color (gold and blue). One is defined at the
root level (`src/app/highlight.directive.ts`); the other is in the contact editor folder (`src/app/contact/contact-
highlight.directive.ts`). Their class names are different (`HighlightDirective` and `ContactHighlightDirective`) but
their selectors both match any HTML element with a `highlight` attribute. Both directives are declared in the
same `AppModule` so both directives are active for all components declared in `AppModule`. There's nothing

Declare pipes

Display the ContactComponent

Run the app

intrinsically wrong with multiple directives selecting the same element. Each could modify the element in a
different, non-conflicting way. In _this case_, both directives compete to set the background color of the same
element. The directive that's declared later (`ContactHighlightDirective`) always wins because its DOM
changes overwrite the changes by the earlier `HighlightDirective`. The `ContactHighlightDirective` will make the
application title text blue when it should be gold. Only the contact name should be blue (see
`src/app/contact/contact.component.html`). If you cannot rename the selectors, you can resolve the conflicts by
creating [feature modules](#feature-modules) that insulate the declarations in one NgModule from the
declarations in another.
While it is legal to declare two _directives_ with the same selector in the same NgModule, the compiler will not
let you declare two _components_ with the same selector in the same NgModule because it **cannot insert
multiple components in the same DOM location**. Nor can you _import_ an NgModule that declares the same
selector as another component in this NgModule. The reason is the same: an HTML element may be controlled
by at most one Angular component. Either rename the selectors or use [feature modules](#feature-modules) to
eliminate the conflict.
Feature modules This tiny app is already experiencing structural issues. * The root `AppModule` grows
larger with each new application class. * There are conflicting directives. The `ContactHighlightDirective` in the
contact re-colors the work done by the `HighlightDirective` declared in `AppModule` and colors the application
title text when it should color only the `ContactComponent`. * The app lacks clear boundaries between contact
functionality and other application features. That lack of clarity makes it harder to assign development
responsibilities to different teams. _Feature modules_ can help resolve these issues. Architecturally, a feature
module is an NgModule class that is dedicated to an application feature or workflow. Technically, it's another
class adorned by the `@NgModule` decorator, just like a root `AppModule`. Feature module metadata have the
same properties as root module metadata. When loaded together, the root module and the feature module
share the same dependency injector, which means the services provided in a feature module are available to
all. These two module types have the following significant technical differences: * You _boot_ the root module
to _launch_ the app; you _import_ a feature module to _extend_ the app. * A feature module can expose or
hide its [declarables](#declarables) from other NgModules. Otherwise, a feature module is distinguished
primarily by its intent. A feature module delivers a cohesive set of functionality focused on an application
business domain, user workflow, facility (forms, http, routing), or collection of related utilities. Feature modules
help you partition the app into areas of specific interest and purpose. A feature module collaborates with the
root module and with other NgModules through the services it provides and the components, directives, and
pipes that it shares. {@a contact-module-v1}

In this section, you refactor the contact editor functionality out of the root AppModule and into a dedicated
feature module by following these steps.

1. Create the ContactModule feature module in its own folder.

Make contact editor a feature

2. Copy the contact editor declarations and providers from AppModule to ContactModule .
3. Export the ContactComponent .
4. Import the ContactModule into the AppModule .
5. Cleanup the AppModule .

You'll create one new ContactModule class and change one existing AppModule class. All other files
are untouched.

Generate the ContactModule and its folder with an Angular CLI command.

ng generate module contact

Here's the generated ContactModule .

After modifying the initial ContactsModule as outlined above, it looks like this.

The following sections discuss the important changes.

Notice that ContactModule imports CommonModule , not BrowserModule . The CLI module
generation took care of this for you.

Feature module components need the common Angular directives but not the services and bootstrapping logic
in BrowserModule . See the NgModule FAQs for more details.

The ContactModule imports the FormsModule because its ContactComponent uses NgModel ,
one of the FormsModule directives.

NgModules don't inherit access to the declarations of the root `AppModule` or any other NgModule. Each
NgModule must import what it needs. Because `ContactComponent` needs the form directives, its
`ContactModule` must import `FormsModule`.

The ContactModule declares the contact editor components, directives and pipes.

The app fails to compile at this point, in part because `ContactComponent` is currently declared in both the

Create the feature module

Import CommonModule

Import FormsModule

Copy declarations

`AppModule` and the `ContactModule`. A component may only be declared in one NgModule. You'll fix this
problem shortly.

{@a root-scoped-providers}

The ContactModule provides the ContactService and the AppModule will stop providing it after
refactoring.

Architecturally, the ContactService belongs to the contact editor domain. Classes in the rest of the app
do not need the ContactService and shouldn't inject it. So it makes sense for the ContactModule to
provide the ContactService as it does.

You might expect that the ContactService would only be injectable in classes declared or provided in the
ContactModule .

That's not the case. Any class anywhere can inject the ContactService because ContactModule

providers are root-scoped.

To be precise, all _eagerly loaded_ modules— modules loaded when the application starts — are root-scoped.
This `ContactModule` is eagerly loaded. You will learn that services provided in [_lazy-loaded_ modules](#lazy-
loaded-modules) have their own scope.

Angular does not have module-scoping mechanism. Unlike components, NgModule instances do not have their
own injectors so they can't have their own provider scopes.

ContactService remains an application-scoped service because Angular registers all NgModule
providers with the application's root injector. This is true whether the service is provided directly in the root
AppModule or in an imported feature module like ContactModule .

In practice, service scoping is rarely an issue. Components don't accidentally inject a service. To inject the
ContactService , you'd have to import its type and explicitly inject the service into a class constructor.

Only contact editor components should import the ContactService type.

If it's really important to you to restrict the scope of a service, provide it in the feature's top-level component
(ContactComponent in this case).

For more on this topic, see "How do I restrict service scope to a module?" in the NgModule FAQs.

Providers are root-scoped

Export public-facing components

The ContactModule makes the ContactComponent public by exporting it.

Declared classes are private by default. Private declarables may only appear in the templates of components
declared by the same NgModule. They are invisible to components in other NgModules.

That's a problem for the AppComponent . Both components used to be declared in AppModule so
Angular could display the ContactComponent within the AppComponent . Now that the
ContactComponent is declared in its own feature module. The AppComponent cannot see it unless it is

public.

The first step toward a solution is to export the ContactComponent . The second step is to import the
ContactModule in the AppModule , which you'll do when you refactor the AppModule.

The AwesomePipe and ContactHighlightDirective remain private and are hidden from the rest of
the application.

The ContactHighlightDirective , being private, no longer overrides the HighlightDirective in
the AppComponent . The background of the title text is gold as intended.

{@a refactor-appmodule}

Return to the AppModule and remove everything specific to the contact editor feature set. Leave only the
classes required at the application root level.

Delete the contact editor import statements.
Delete the contact editor declarations and providers.
Delete the FormsModule from the imports list (the AppComponent doesn't need it).
Import the ContactModule so the app can continue to display the exported ContactComponent .

Here's the refactored AppModule , presented side-by-side with the previous version.

There's a lot to like in the revised AppModule .

It does not change as the Contact domain grows.
It only changes when you add new NgModules.
It's simpler:

Fewer import statements.

Refactor the AppModule

Improvements

No FormsModule import.
No contact editor declarations.
No ContactService provider.
No highlight directive conflicts.

Try this ContactModule version of the sample.

Try the live example.

{@a routing-modules} {@a lazy-loaded-modules}

Navigating the app with the Angular Router reveals new dimensions of the NgModule.

In this segment, you'll learn to write routing modules that configure the router. You'll discover the implications of
lazy loading a feature module with the router's loadChildren method.

Imagine that the sample app has evolved substantially along the lines of the Tour of Heroes tutorial.

The app has three feature modules: Contact, Hero (new), and Crisis (new).
The Angular router helps users navigate among these modules.
The ContactComponent is the default destination when the app starts.
The ContactModule continues to be eagerly loaded when the application starts.
HeroModule and the CrisisModule are lazy-loaded.

There's too much code behind this sample app to review every line. Instead, the guide explores just those parts
necessary to understand new aspects of NgModules.

You can examine the complete source for this version of the app in the live example.

{@a app-component-template}

The revised AppComponent template has a title, three links, and a <router-outlet> .

The <app-contact> element that displayed the ContactComponent is gone; you're routing to the
Contact page now.

Routing modules

The root AppComponent

The root AppModule

The AppModule is slimmer now.

The AppModule is no longer aware of the application domains such as contacts, heroes, and crises. Those
concerns are pushed down to ContactModule , HeroesModule , and CrisisModule respectively
and only the routing configuration knows about them.

The significant change from version 2 is the addition of the AppRoutingModule to the NgModule imports .
The AppRoutingModule is a routing module that handles the app's routing concerns.

The router is the subject of the Routing & Navigation guide, so this section skips many routing details and
concentrates on the intersection of NgModules and routing.

You can specify router configuration directly within the root AppModule or within a feature module.

The Router guide recommends instead that you locate router configuration in separate, dedicated NgModules,
called routing modules. You then import those routing modules into their corresponding root or feature
modules.

The goal is to separate the normal declarative concerns of an NgModule from the often complex router
configuration logic.

By convention, a routing module's name ends in ...RoutingModule . The top-level root module is
AppModule and it imports its companion routing module called AppRoutingModule .

Here is this app's AppRoutingModule , followed by a discussion.

The AppRoutingModule defines three routes:

The first route redirects the empty URL (such as http://host.com/) to another route whose path is
contact (such as http://host.com/contact).

The contact route isn't defined within the AppRoutingModule . It's defined in the Contact feature's own
routing module, ContactRoutingModule .

It's standard practice for feature modules with routing components to define their own routes. You'll get to
[`ContactRoutingModule`](#contact-routing-module) in a moment.

The remaining two routes use lazy loading syntax to tell the router where to find the modules for the hero and
crisis features:

A lazy-loaded NgModule location is a _string_, not a _type_. In this app, the string identifies both the NgModule

AppRoutingModule

file and the NgModule _class_, the latter separated from the former by a `#`.

A routing module typically imports the Angular RouterModule so it can register routes.

It may also import a feature module which registers routes (either directly or through its companion routing
module).

This AppRoutingModule does both.

It first imports the ContactModule , which as you'll see, imports its own ContactRoutingModule .

Import order matters! Because "contacts" is the first defined route and the default route for the app, you must
import it before all other routing-related modules.

The second import registers the routes defined in this module by calling the RouterModule.forRoot

class method.

The forRoot method does two things:

1. Configures the router with the supplied routes.
2. Initializes the Angular router itself.

Call `RouterModule.forRoot` exactly once for the entire app. Calling it in the `AppRoutingModule`, the
companion to the root `AppModule`, is a good way to ensure that this method is called exactly once. Never call
`RouterModule.forRoot` in a feature's _routing module_.

All routing modules should re-export the RouterModule .

Re-exporting RouterModule makes the router directives available to the companion module that imports it.
This is a considerable convenience for the importing module.

For example, the AppComponent template relies on the routerLink directive to turn the user's clicks
into navigations. The Angular compiler only recognizes routerLink because

AppComponent is declared by AppModule ,
AppModule imports AppRoutingModule ,
AppRoutingModule exports RouterModule , and
RouterModule exports the RouterLink directive.

Routing module imports

Re-export RouterModule

If AppRoutingModule didn't re-export RouterModule , the AppModule would have to import the
RouterModule itself.

{@a contact-routing-module}

The three feature modules (ContactModule , HeroModule , CrisisModule) have corresponding
routing modules (ContactRoutingModule , HeroRoutingModule , CrisisRoutingModule).

They follow the same pattern as the AppRoutingModule . * define routes * register the routes with
Angular's RouterModule * export the RouterModule .

The ContactRoutingModule is the simplest of the three. It defines and registers a single route to the
ContactComponent .

There is one critical difference from AppRoutingModule : you pass the routes to
RouterModule.forChild , not forRoot .

Always call `RouterModule.forChild` in a feature-routing module. Never call `RouterModule.forRoot`.

Because the app navigates to the ContactComponent instead of simply displaying it in the
AppComponent template, the ContactModule has changed.

It imports the ContactRoutingModule .

It no longer exports ContactComponent .

The ContactComponent is only displayed by the router, No template references its <app-contact>

selector. There's no reason to make it public via the exports array.

Here is the latest version, side-by-side with the previous version.

{@a hero-module}

The HeroModule and CrisisModule have corresponding routing modules, HeroRoutingModule

and CrisisRoutingModule .

The app lazy loads the HeroModule and the CrisisModule . That means the HeroModule and the

Routing to a feature module

ContactModule changes

Lazy-loaded routing

CrisisModule are not loaded into the browser until the user navigates to their components.

Do not import the `HeroModule` or `CrisisModule` or any of their classes outside of their respective file folders.
If you do, you will unintentionally load those modules and all of their code when the application starts, defeating
the purpose of lazy loading. For example, if you import the `HeroService` in `AppModule`, the `HeroService`
class and all related hero classes will be loaded when the application starts.

Lazy loading can improve the app's perceived performance because the browser doesn't have to process lazy-
loaded code when the app starts. It may never process that code.

You cannot tell that these modules are lazy-loaded by looking at their routing modules. They happen to be a
little more complex than ContactRoutingModule . For example, The HeroRoutingModule has child
routes. But the added complexity springs from intrinsic hero and crisis functionality, not from lazy loading.
Fundamentally, these routing modules are just like ContactRoutingModule and you write them the same
way.

{@a lazy-load-DI}

There is a runtime difference that can be significant. Services provided by lazy-loaded NgModules are only
available to classes instantiated within the lazy-loaded context. The reason has to do with dependency
injection.

When an NgModule is eagerly loaded as the application starts, its providers are added to the application's root
injector. Any class in the application can inject a service from the root injector.

When the router lazy loads an NgModule, Angular instantiates the module with a child injector (a descendant of
the root injector) and adds the module's providers to this child injector. Classes created with the child injector
can inject one of its provided services. Classes created with root injector cannot.

Each of the three feature modules has its own data access service. Because the ContactModule is
eagerly loaded when the application starts, its ContactService is provided by the application's root
dependency injector. That means the ContactService can be injected into any application class, including
hero and crisis components.

Because CrisisModule is lazy-loaded, its CrisisService is provided by the CrisisModule child
injector. It can only be injected into one of the crisis components. No other kind of component can inject the
CrisisService because no other kind of component can be reached along a route that lazy loads the
CrisisModule .

Lazy-loaded NgModule providers

Both eager and lazy-loaded NgModules are created once and never destroyed. This means that their provided
service instances are created once and never destroyed.

As you navigate among the application components, the router creates and destroys instances of the contact,
hero, and crisis components. When these components inject data services provided by their modules, they get
the same data service instance each time.

If the HeroService kept a cache of unsaved changes and the user navigated to the
ContactComponent or the CrisisListComponent , the pending hero changes would remain in the

one HeroService instance, waiting to be saved.

But if you provided the HeroService in the HeroComponent instead of the HeroModule , new
HeroService instances would be created each time the user navigated to a hero component. Previously

pending hero changes would be lost.

To illustrate this point, the sample app provides the HeroService in the HeroComponent rather than the
HeroModule .

Run the app, open the browser development tools, and look at the console as you navigate among the feature
pages.

// App starts ContactService instance created. ... // Navigate to Crisis Center CrisisService instance created. ...
// Navigate to Heroes HeroService instance created. ... // Navigate to Contact HeroService instance destroyed.
... // Navigate back to Heroes HeroService instance created.

The console log shows the HeroService repeatedly created and destroyed. The ContactService and
CrisisService are created but never destroyed, no matter where you navigate.

Try this routed version of the sample.

Try the live example.

{@a shared-module}

The app is shaping up. But there are a few annoying problems. There are three unnecessarily different
highlight directives and the many files cluttering the app folder level could be better organized.

Lazy-loaded NgModule lifetime

Run it

Shared modules

You can eliminate the duplication and tidy-up by writing a SharedModule to hold the common components,
directives, and pipes. Then share this NgModule with the other NgModules that need these declarables.

Use the CLI to create the SharedModule class in its src/app/shared folder.

ng generate module shared

Now refactor as follows:

Move the AwesomePipe from src/app/contact to src/app/shared .
Move the HighlightDirective from src/app/hero to src/app/shared .
Delete the highlight directive classes from src/app/ and src/app/contact .
Update the SharedModule as follows:

Note the following:

It declares and exports the shared pipe and directive.
It imports and re-exports the CommonModule and FormsModule

It can re-export FormsModule without importing it.

Technically, there is no need for SharedModule to import CommonModule or FormsModule .
SharedModule doesn't declare anything that needs material from CommonModule or FormsModule .

But NgModules that would like to import SharedModule for its pipe and highlight directive happen also to
declare components that need NgIf and NgFor from CommonModule and do two-way binding with
[(ngModel)] from the FormsModule .

Normally, they'd have to import CommonModule and FormsModule as well as SharedModule . Now
they can just import SharedModule . By exporting CommonModule and FormsModule ,
SharedModule makes them available to its importers for free.

See how ContactModule became more concise, compared to its previous version:

Notice the following:

The AwesomePipe and ContactHighlightDirective are gone.
The imports include SharedModule instead of CommonModule and FormsModule .
The new version is leaner and cleaner.

Re-exporting NgModules

A trimmer ContactModule

SharedModule exists to make commonly used components, directives, and pipes available for use in the
templates of components in many other NgModules.

The TitleComponent is used only once by the AppComponent . There's no point in sharing it.

{@a no-shared-module-providers}

While many components share the same service instances, they rely on Angular dependency injection to do
this kind of sharing, not the NgModule system.

Several components of the sample inject the UserService . There should be only one instance of the
UserService in the entire application and only one provider of it.

UserService is an application-wide singleton. You don't want each NgModule to have its own separate
instance. Yet there is a real danger of that happening if the SharedModule provides the UserService .

Do *not* specify app-wide singleton `providers` in a shared module. A lazy-loaded NgModule that imports that
shared module makes its own copy of the service.

{@a core-module}

At the moment, the root folder is cluttered with the UserService and TitleComponent that only
appear in the root AppComponent . You didn't include them in the SharedModule for reasons just
explained.

Instead, gather them in a single CoreModule that you import once when the app starts and never import
anywhere else.

Perform the following steps:

1. Create a CoreModule class in an src/app/core folder.
2. Move the TitleComponent and UserService from src/app/ to src/app/core .
3. Declare and export the TitleComponent .
4. Provide the UserService .
5. Update the root AppModule to import CoreModule .

Why TitleComponent isn't shared

Why UserService isn't shared

The Core module

Most of this work is familiar. The interesting part is the CoreModule .

You're importing some extra symbols from the Angular core library that you're not using yet. They'll become
relevant later in this page.

The @NgModule metadata should be familiar. You declare the TitleComponent because this NgModule
owns it. You export it because AppComponent (which is in AppModule) displays the title in its template.
TitleComponent needs the Angular NgIf directive that you import from CommonModule .

CoreModule provides the UserService . Angular registers that provider with the app root injector,
making a singleton instance of the UserService available to any component that needs it, whether that
component is eagerly or lazily loaded.

This scenario is clearly contrived. The app is too small to worry about a single service file and a tiny, one-time
component. A `TitleComponent` sitting in the root folder isn't bothering anyone. The root `AppModule` can
register the `UserService` itself, as it does currently, even if you decide to relocate the `UserService` file to the
`src/app/core` folder. Real-world apps have more to worry about. They can have several single-use
components (such as spinners, message toasts, and modal dialogs) that appear only in the `AppComponent`
template. You don't import them elsewhere so they're not shared in that sense. Yet they're too big and messy to
leave loose in the root folder. Apps often have many singleton services like this sample's `UserService`. Each
must be registered exactly once, in the app root injector, when the application starts. While many components
inject such services in their constructors—and therefore require JavaScript `import` statements to import their
symbols—no other component or NgModule should define or re-create the services themselves. Their
providers aren't shared. We recommend collecting such single-use classes and hiding their details inside a
`CoreModule`. A simplified root `AppModule` imports `CoreModule` in its capacity as orchestrator of the
application as a whole.

Here is the updated AppModule paired with version 3 for comparison:

AppModule now has the following qualities:

A little smaller because many src/app/root classes have moved to other NgModules.
Stable because you'll add future components and providers to other NgModules, not this one.
Delegated to imported NgModules rather than doing work.
Focused on its main task, orchestrating the app as a whole.

{@a core-for-root}

Why bother?

A trimmer AppModule

An NgModule that adds providers to the application can offer a facility for configuring those providers as well.

By convention, the forRoot static method both provides and configures services at the same time. It takes
a service configuration object and returns a ModuleWithProviders, which is a simple object with the following
properties:

ngModule : the CoreModule class
providers : the configured providers

The root AppModule imports the CoreModule and adds the providers to the AppModule

providers.

More precisely, Angular accumulates all imported providers before appending the items listed in
`@NgModule.providers`. This sequence ensures that whatever you add explicitly to the `AppModule` providers
takes precedence over the providers of imported NgModules.

Add a CoreModule.forRoot method that configures the core UserService .

You've extended the core UserService with an optional, injected UserServiceConfig . If a
UserServiceConfig exists, the UserService sets the user name from that config.

Here's CoreModule.forRoot that takes a UserServiceConfig object:

Lastly, call it within the imports list of the AppModule .

The app displays "Miss Marple" as the user instead of the default "Sherlock Holmes".

Call `forRoot` only in the root module, `AppModule`. Calling it in any other NgModule, particularly in a lazy-
loaded NgModule, is contrary to the intent and can produce a runtime error. Remember to _import_ the result;
don't add it to any other `@NgModule` list.

{@a prevent-reimport}

Only the root AppModule should import the CoreModule . Bad things happen if a lazy-loaded NgModule
imports it.

You could hope that no developer makes that mistake. Or you can guard against it and fail fast by adding the
following CoreModule constructor.

Configure core services with CoreModule.forRoot

Prevent reimport of the CoreModule

The constructor tells Angular to inject the CoreModule into itself. That seems dangerously circular.

The injection would be circular if Angular looked for CoreModule in the current injector. The @SkipSelf

decorator means "look for CoreModule in an ancestor injector, above me in the injector hierarchy."

If the constructor executes as intended in the AppModule , there is no ancestor injector that could provide an
instance of CoreModule . The injector should give up.

By default, the injector throws an error when it can't find a requested provider. The @Optional decorator
means not finding the service is OK. The injector returns null , the parentModule parameter is null, and
the constructor concludes uneventfully.

It's a different story if you improperly import CoreModule into a lazy-loaded NgModule such as
HeroModule (try it).

Angular creates a lazy-loaded NgModule with its own injector, a child of the root injector. @SkipSelf causes
Angular to look for a CoreModule in the parent injector, which this time is the root injector. Of course it finds
the instance imported by the root AppModule . Now parentModule exists and the constructor throws the
error.

You made it! You can examine and download the complete source for this final version from the live example.

Now that you understand NgModules, you may be interested in the companion NgModule FAQs page with its
ready answers to specific design and implementation questions.

Conclusion

Frequently asked questions

The Angular CLI, Angular applications, and Angular itself depend upon features and functionality provided by
libraries that are available as npm packages.

You can download and install these npm packages with the npm client, which runs as a node.js application.

The yarn client is a popular alternative for downloading and installing npm packages. The Angular CLI uses
yarn by default to install npm packages when you create a new project.

Node.js and npm are essential to Angular development. [Get them now](https://docs.npmjs.com/getting-
started/installing-node "Installing Node.js and updating npm") if they're not already installed on your machine.
Verify that you are running node `v4.x.x` or higher and npm `3.x.x` or higher by running the commands
`node -v` and `npm -v` in a terminal/console window. Older versions produce errors. Consider using [nvm]
(https://github.com/creationix/nvm) for managing multiple versions of node and npm. You may need [nvm]
(https://github.com/creationix/nvm) if you already have projects running on your machine that use other
versions of node and npm.

Both npm and yarn install packages identified in a package.json file.

The CLI ng new command creates a default package.json file for your project. This package.json
specifies a starter set of packages that work well together and jointly support many common application
scenarios.

You will add packages to package.json as your application evolves. You may even remove some.

This guide focuses on the most important packages in the starter set.

The package.json includes two sets of packages, dependencies and devDependencies.

The dependencies are essential to running the application. The devDependencies are only necessary to
develop the application.

{@a dependencies}

Npm Packages

package.json

dependencies and devDependencies

The dependencies section of package.json contains:

Angular packages: Angular core and optional modules; their package names begin @angular/ .

Support packages: 3rd party libraries that must be present for Angular apps to run.

Polyfill packages: Polyfills plug gaps in a browser's JavaScript implementation.

@angular/animations: Angular's animations library makes it easy to define and apply animation effects such
as page and list transitions. Read about it in the Animations guide.

@angular/common: The commonly needed services, pipes, and directives provided by the Angular team. The
HttpClientModule is also here, in the '@angular/common/http' subfolder.

@angular/core: Critical runtime parts of the framework needed by every application. Includes all metadata
decorators, Component , Directive , dependency injection, and the component lifecycle hooks.

@angular/compiler: Angular's Template Compiler. It understands templates and can convert them to code
that makes the application run and render. Typically you don’t interact with the compiler directly; rather, you use
it indirectly via platform-browser-dynamic when JIT compiling in the browser.

@angular/forms: support for both template-driven and reactive forms.

@angular/http: Angular's old, soon-to-be-deprecated, HTTP client.

@angular/platform-browser: Everything DOM and browser related, especially the pieces that help render into
the DOM. This package also includes the bootstrapStatic() method for bootstrapping applications for
production builds that pre-compile with AOT.

@angular/platform-browser-dynamic: Includes Providers and methods to compile and run the app on the
client using the JIT compiler.

@angular/router: The router module navigates among your app pages when the browser URL changes.

@angular/upgrade: Set of utilities for upgrading AngularJS applications to Angular.

{@a polyfills}

Dependencies

Angular Packages

Many browsers lack native support for some features in the latest HTML standards, features that Angular
requires. "Polyfills" can emulate the missing features. The Browser Support guide explains which browsers
need polyfills and how you can add them.

The default package.json installs the core-js package which polyfills missing features for several popular
browser.

rxjs: Many Angular APIs return observables. RxJS is an implementation of the proposed Observables
specification currently before the TC39 committee that determines standards for the JavaScript language.

zone.js: Angular relies on zone.js to run Angular's change detection processes when native JavaScript
operations raise events. Zone.js is an implementation of a specification currently before the TC39 committee
that determines standards for the JavaScript language.

{@a dev-dependencies}

The packages listed in the devDependencies section of the package.json help you develop the
application on your local machine.

You don't deploy them with the production application although there is no harm in doing so.

@angular/cli: The Angular CLI tools.

@angular/compiler-cli: The Angular compiler, which is invoked by the Angular CLI's build and serve
commands.

@angular/language-service: The Angular language service analyzes component templates and provides type
and error information that TypeScript-aware editors can use to improve the developer's experience. For
example, see the Angular language service extension for VS Code

**@types/... **: TypeScript definition files for 3rd party libraries such as Jasmine and node.

codelyzer: A linter for Angular apps whose rules conform to the Angular style guide.

**jasmine/... **: packages to support the Jasmine test library.

Polyfill packages

Support packages

DevDependencies

**karma/... **: packages to support the karma test runner.

protractor: an end-to-end (e2e) framework for Angular apps. Built on top of WebDriverJS.

ts-node: TypeScript execution environment and REPL for node.

tslint: a static analysis tool that checks TypeScript code for readability, maintainability, and functionality errors.

typescript: the TypeScript language server, including the tsc TypeScript compiler.

The default package.json installs more packages than you'll need for your project.

A given package may contain tens, hundreds, even thousands of files, all of them in your local machine's
node_modules directory. The sheer volume of files is intimidating,

You can remove packages that you don't need but how can you be sure that you won't need it? As a practical
matter, it's better to install a package you don't need than worry about it. Extra packages and package files on
your local development machine are harmless.

By default the Angular CLI build process bundles into a single file just the few "vendor" library files that your
application actually needs. The browser downloads this bundle, not the original package files.

See the Deployment to learn more.

So many packages! So many files!

Every application starts out with what seems like a simple task: get data, transform them, and show them to
users. Getting data could be as simple as creating a local variable or as complex as streaming data over a
WebSocket.

Once data arrive, you could push their raw toString values directly to the view, but that rarely makes for a
good user experience. For example, in most use cases, users prefer to see a date in a simple format like
April 15, 1988 rather than the raw string format Fri Apr 15 1988 00:00:00 GMT-0700 (Pacific
Daylight Time).

Clearly, some values benefit from a bit of editing. You may notice that you desire many of the same
transformations repeatedly, both within and across many applications. You can almost think of them as styles.
In fact, you might like to apply them in your HTML templates as you do styles.

Introducing Angular pipes, a way to write display-value transformations that you can declare in your HTML.

You can run the in Plunker and download the code from there.

A pipe takes in data as input and transforms it to a desired output. In this page, you'll use pipes to transform a
component's birthday property into a human-friendly date.

Focus on the component's template.

Inside the interpolation expression, you flow the component's birthday value through the pipe operator (|)
to the Date pipe function on the right. All pipes work this way.

Angular comes with a stock of pipes such as DatePipe , UpperCasePipe , LowerCasePipe ,
CurrencyPipe , and PercentPipe . They are all available for use in any template.

Read more about these and many other built-in pipes in the [pipes topics](api?type=pipe) of the [API
Reference](api); filter for entries that include the word "pipe". Angular doesn't have a `FilterPipe` or an
`OrderByPipe` for reasons explained in the [Appendix](guide/pipes#no-filter-pipe) of this page.

Pipes

Using pipes

Built-in pipes

A pipe can accept any number of optional parameters to fine-tune its output. To add parameters to a pipe,
follow the pipe name with a colon (:) and then the parameter value (such as currency:'EUR'). If the pipe
accepts multiple parameters, separate the values with colons (such as slice:1:5)

Modify the birthday template to give the date pipe a format parameter. After formatting the hero's April 15th
birthday, it renders as 04/15/88:

The parameter value can be any valid template expression, (see the Template expressions section of the
Template Syntax page) such as a string literal or a component property. In other words, you can control the
format through a binding the same way you control the birthday value through a binding.

Write a second component that binds the pipe's format parameter to the component's format property.
Here's the template for that component:

You also added a button to the template and bound its click event to the component's toggleFormat()

method. That method toggles the component's format property between a short form ('shortDate')
and a longer form ('fullDate').

As you click the button, the displayed date alternates between "04/15/1988" and "Friday, April 15,
1988".

Read more about the `DatePipe` format options in the [Date Pipe](api/common/DatePipe) API Reference page.

You can chain pipes together in potentially useful combinations. In the following example, to display the
birthday in uppercase, the birthday is chained to the DatePipe and on to the UpperCasePipe . The
birthday displays as APR 15, 1988.

This example—which displays FRIDAY, APRIL 15, 1988—chains the same pipes as above, but passes in
a parameter to date as well.

Parameterizing a pipe

Chaining pipes

Custom pipes

You can write your own custom pipes. Here's a custom pipe named ExponentialStrengthPipe that can
boost a hero's powers:

This pipe definition reveals the following key points:

A pipe is a class decorated with pipe metadata.
The pipe class implements the PipeTransform interface's transform method that accepts an
input value followed by optional parameters and returns the transformed value.
There will be one additional argument to the transform method for each parameter passed to the
pipe. Your pipe has one such parameter: the exponent .
To tell Angular that this is a pipe, you apply the @Pipe decorator, which you import from the core
Angular library.
The @Pipe decorator allows you to define the pipe name that you'll use within template expressions. It
must be a valid JavaScript identifier. Your pipe's name is exponentialStrength .

The *PipeTransform* interface The `transform` method is essential to a pipe. The `PipeTransform`
interface defines that method and guides both tooling and the compiler. Technically, it's optional; Angular
looks for and executes the `transform` method regardless.

Now you need a component to demonstrate the pipe.

Note the following:

You use your custom pipe the same way you use built-in pipes.
You must include your pipe in the declarations array of the AppModule .

Remember the declarations array
You must register custom pipes. If you don't, Angular reports an error. Angular CLI's generator registers the
pipe automatically.

To probe the behavior in the , change the value and optional exponent in the template.

It's not much fun updating the template to test the custom pipe. Upgrade the example to a "Power Boost

Power Boost Calculator

Calculator" that combines your pipe and two-way data binding with ngModel .

{@a change-detection}

Angular looks for changes to data-bound values through a change detection process that runs after every DOM
event: every keystroke, mouse move, timer tick, and server response. This could be expensive. Angular strives
to lower the cost whenever possible and appropriate.

Angular picks a simpler, faster change detection algorithm when you use a pipe.

In the next example, the component uses the default, aggressive change detection strategy to monitor and
update its display of every hero in the heroes array. Here's the template:

The companion component class provides heroes, adds heroes into the array, and can reset the array.

You can add heroes and Angular updates the display when you do. If you click the reset button, Angular
replaces heroes with a new array of the original heroes and updates the display. If you added the ability to
remove or change a hero, Angular would detect those changes and update the display as well.

Add a FlyingHeroesPipe to the *ngFor repeater that filters the list of heroes to just those heroes who
can fly.

Here's the FlyingHeroesPipe implementation, which follows the pattern for custom pipes described
earlier.

Notice the odd behavior in the : when you add flying heroes, none of them are displayed under "Heroes who
fly."

Pipes and change detection

No pipe

FlyingHeroesPipe

Although you're not getting the behavior you want, Angular isn't broken. It's just using a different change-
detection algorithm that ignores changes to the list or any of its items.

Notice how a hero is added:

You add the hero into the heroes array. The reference to the array hasn't changed. It's the same array.
That's all Angular cares about. From its perspective, same array, no change, no display update.

To fix that, create an array with the new hero appended and assign that to heroes . This time Angular
detects that the array reference has changed. It executes the pipe and updates the display with the new array,
which includes the new flying hero.

If you mutate the array, no pipe is invoked and the display isn't updated; if you replace the array, the pipe
executes and the display is updated. The Flying Heroes application extends the code with checkbox switches
and additional displays to help you experience these effects.

Replacing the array is an efficient way to signal Angular to update the display. When do you replace the array?
When the data change. That's an easy rule to follow in this example where the only way to change the data is
by adding a hero.

More often, you don't know when the data have changed, especially in applications that mutate data in many

ways, perhaps in application locations far away. A component in such an application usually can't know about
those changes. Moreover, it's unwise to distort the component design to accommodate a pipe. Strive to keep
the component class independent of the HTML. The component should be unaware of pipes.

For filtering flying heroes, consider an impure pipe.

There are two categories of pipes: pure and impure. Pipes are pure by default. Every pipe you've seen so far
has been pure. You make a pipe impure by setting its pure flag to false. You could make the
FlyingHeroesPipe impure like this:

Before doing that, understand the difference between pure and impure, starting with a pure pipe.

Angular executes a pure pipe only when it detects a pure change to the input value. A pure change is either a
change to a primitive input value (String , Number , Boolean , Symbol) or a changed object
reference (Date , Array , Function , Object).

Angular ignores changes within (composite) objects. It won't call a pure pipe if you change an input month, add
to an input array, or update an input object property.

This may seem restrictive but it's also fast. An object reference check is fast—much faster than a deep check
for differences—so Angular can quickly determine if it can skip both the pipe execution and a view update.

For this reason, a pure pipe is preferable when you can live with the change detection strategy. When you
can't, you can use the impure pipe.

Or you might not use a pipe at all. It may be better to pursue the pipe's purpose with a property of the
component, a point that's discussed later in this page.

Angular executes an impure pipe during every component change detection cycle. An impure pipe is called
often, as often as every keystroke or mouse-move.

With that concern in mind, implement an impure pipe with great care. An expensive, long-running pipe could
destroy the user experience.

{@a impure-flying-heroes}

Pure and impure pipes

Pure pipes

Impure pipes

A flip of the switch turns the FlyingHeroesPipe into a FlyingHeroesImpurePipe . The complete
implementation is as follows:

You inherit from FlyingHeroesPipe to prove the point that nothing changed internally. The only difference
is the pure flag in the pipe metadata.

This is a good candidate for an impure pipe because the transform function is trivial and fast.

You can derive a FlyingHeroesImpureComponent from FlyingHeroesComponent .

The only substantive change is the pipe in the template. You can confirm in the that the flying heroes display
updates as you add heroes, even when you mutate the heroes array.

{@a async-pipe}

The Angular AsyncPipe is an interesting example of an impure pipe. The AsyncPipe accepts a
Promise or Observable as input and subscribes to the input automatically, eventually returning the

emitted values.

The AsyncPipe is also stateful. The pipe maintains a subscription to the input Observable and keeps
delivering values from that Observable as they arrive.

This next example binds an Observable of message strings (message$) to a view with the async

pipe.

The Async pipe saves boilerplate in the component code. The component doesn't have to subscribe to the
async data source, extract the resolved values and expose them for binding, and have to unsubscribe when it's
destroyed (a potent source of memory leaks).

Write one more impure pipe, a pipe that makes an HTTP request.

Remember that impure pipes are called every few milliseconds. If you're not careful, this pipe will punish the
server with requests.

In the following code, the pipe only calls the server when the request URL changes and it caches the server
response. The code uses the Angular http client to retrieve data:

An impure FlyingHeroesPipe

The impure AsyncPipe

An impure caching pipe

Now demonstrate it in a harness component whose template defines two bindings to this pipe, both requesting
the heroes from the heroes.json file.

The component renders as the following:

A breakpoint on the pipe's request for data shows the following:

Each binding gets its own pipe instance.
Each pipe instance caches its own URL and data.
Each pipe instance only calls the server once.

In the previous code sample, the second fetch pipe binding demonstrates more pipe chaining. It displays
the same hero data in JSON format by chaining through to the built-in JsonPipe .

Debugging with the json pipe
The [JsonPipe](api/common/JsonPipe) provides an easy way to diagnosis a mysteriously failing data binding or
inspect an object for future binding.

{@a pure-pipe-pure-fn}

A pure pipe uses pure functions. Pure functions process inputs and return values without detectable side
effects. Given the same input, they should always return the same output.

The pipes discussed earlier in this page are implemented with pure functions. The built-in DatePipe is a
pure pipe with a pure function implementation. So are the ExponentialStrengthPipe and
FlyingHeroesPipe . A few steps back, you reviewed the FlyingHeroesImpurePipe —an impure pipe

JsonPipe

Pure pipes and pure functions

with a pure function.

But always implement a pure pipe with a pure function. Otherwise, you'll see many console errors regarding
expressions that changed after they were checked.

Pipes are a great way to encapsulate and share common display-value transformations. Use them like styles,
dropping them into your template's expressions to enrich the appeal and usability of your views.

Explore Angular's inventory of built-in pipes in the API Reference. Try writing a custom pipe and perhaps
contributing it to the community.

{@a no-filter-pipe}

Angular doesn't provide pipes for filtering or sorting lists. Developers familiar with AngularJS know these as
filter and orderBy . There are no equivalents in Angular.

This isn't an oversight. Angular doesn't offer such pipes because they perform poorly and prevent aggressive
minification. Both filter and orderBy require parameters that reference object properties. Earlier in
this page, you learned that such pipes must be impure and that Angular calls impure pipes in almost every
change-detection cycle.

Filtering and especially sorting are expensive operations. The user experience can degrade severely for even
moderate-sized lists when Angular calls these pipe methods many times per second. filter and
orderBy have often been abused in AngularJS apps, leading to complaints that Angular itself is slow. That

charge is fair in the indirect sense that AngularJS prepared this performance trap by offering filter and
orderBy in the first place.

The minification hazard is also compelling, if less obvious. Imagine a sorting pipe applied to a list of heroes.
The list might be sorted by hero name and planet of origin properties in the following way:

<!-- NOT REAL CODE! --> <div *ngFor="let hero of heroes | orderBy:'name,planet'"></div>

You identify the sort fields by text strings, expecting the pipe to reference a property value by indexing (such as
hero['name']). Unfortunately, aggressive minification manipulates the Hero property names so that
Hero.name and Hero.planet become something like Hero.a and Hero.b . Clearly
hero['name'] doesn't work.

Next steps

Appendix: No FilterPipe or OrderByPipe

While some may not care to minify this aggressively, the Angular product shouldn't prevent anyone from
minifying aggressively. Therefore, the Angular team decided that everything Angular provides will minify safely.

The Angular team and many experienced Angular developers strongly recommend moving filtering and sorting
logic into the component itself. The component can expose a filteredHeroes or sortedHeroes

property and take control over when and how often to execute the supporting logic. Any capabilities that you
would have put in a pipe and shared across the app can be written in a filtering/sorting service and injected into
the component.

If these performance and minification considerations don't apply to you, you can always create your own such
pipes (similar to the FlyingHeroesPipe) or find them in the community.

Good tools make application development quicker and easier to maintain than if you did everything by hand.

The Angular CLI is a command line interface tool that can create a project, add files, and perform a variety
of ongoing development tasks such as testing, bundling, and deployment.

The goal in this guide is to build and run a simple Angular application in TypeScript, using the Angular CLI
while adhering to the Style Guide recommendations that benefit every Angular project.

By the end of the chapter, you'll have a basic understanding of development with the CLI and a foundation for
both these documentation samples and for real world applications.

And you can also download the example.

You need to set up your development environment before you can do anything.

Install Node.js® and npm if they are not already on your machine.

Verify that you are running at least node `6.9.x` and npm `3.x.x` by running `node -v` and `npm -v` in a
terminal/console window. Older versions produce errors, but newer versions are fine.

Then install the Angular CLI globally.

npm install -g @angular/cli

Open a terminal window.

Generate a new project and skeleton application by running the following commands:

ng new my-app

Patience, please. It takes time to set up a new project; most of it is spent installing npm packages.

QuickStart

Step 1. Set up the Development Environment

Step 2. Create a new project

Step 3: Serve the application

Go to the project directory and launch the server.

cd my-app ng serve --open

The ng serve command launches the server, watches your files, and rebuilds the app as you make
changes to those files.

Using the --open (or just -o) option will automatically open your browser on
http://localhost:4200/ .

Your app greets you with a message:

The CLI created the first Angular component for you. This is the root component and it is named app-root .
You can find it in ./src/app/app.component.ts .

Open the component file and change the title property from Welcome to app!! to Welcome to My First
Angular App!!:

The browser reloads automatically with the revised title. That's nice, but it could look better.

Open src/app/app.component.css and give the component some style.

Step 4: Edit your first Angular component

Looking good!

That's about all you'd expect to do in a "Hello, World" app.

You're ready to take the Tour of Heroes Tutorial and build a small application that demonstrates the great things
you can build with Angular.

Or you can stick around a bit longer to learn about the files in your brand new project.

An Angular CLI project is the foundation for both quick experiments and enterprise solutions.

The first file you should check out is README.md . It has some basic information on how to use CLI
commands. Whenever you want to know more about how Angular CLI works make sure to visit the Angular CLI
repository and Wiki.

Some of the generated files might be unfamiliar to you.

Your app lives in the src folder. All Angular components, templates, styles, images, and anything else your
app needs go here. Any files outside of this folder are meant to support building your app.

src
app
app.component.css
app.component.html
app.component.spec.ts
app.component.ts
app.module.ts
assets
.gitkeep
environments

What's next?

Project file review

The src folder

environment.prod.ts
environment.ts
favicon.ico
index.html
main.ts
polyfills.ts
styles.css
test.ts
tsconfig.app.json
tsconfig.spec.json

File Purpose

`app/app.component.
{ts,html,css,spec.ts}`

Defines the `AppComponent` along with an HTML template, CSS stylesheet, and
a unit test. It is the **root** component of what will become a tree of nested
components as the application evolves.

`app/app.module.ts` Defines `AppModule`, the [root module](guide/bootstrapping "AppModule: the
root module") that tells Angular how to assemble the application. Right now it
declares only the `AppComponent`. Soon there will be more components to
declare.

`assets/*` A folder where you can put images and anything else to be copied wholesale
when you build your application.

`environments/*` This folder contains one file for each of your destination environments, each
exporting simple configuration variables to use in your application. The files are
replaced on-the-fly when you build your app. You might use a different API
endpoint for development than you do for production or maybe different analytics
tokens. You might even use some mock services. Either way, the CLI has you
covered.

`favicon.ico` Every site wants to look good on the bookmark bar. Get started with your very
own Angular icon.

`index.html` The main HTML page that is served when someone visits your site. Most of the
time you'll never need to edit it. The CLI automatically adds all `js` and `css` files
when building your app so you never need to add any `

Reactive forms is an Angular technique for creating forms in a reactive style. This guide explains reactive forms
as you follow the steps to build a "Hero Detail Editor" form.

{@a toc}

Try the Reactive Forms live-example.

You can also run the Reactive Forms Demo version and choose one of the intermediate steps from the "demo
picker" at the top.

{@a intro}

Angular offers two form-building technologies: reactive forms and template-driven forms. The two technologies
belong to the @angular/forms library and share a common set of form control classes.

But they diverge markedly in philosophy, programming style, and technique. They even have their own
modules: the ReactiveFormsModule and the FormsModule .

Angular reactive forms facilitate a reactive style of programming that favors explicit management of the data
flowing between a non-UI data model (typically retrieved from a server) and a UI-oriented form model that
retains the states and values of the HTML controls on screen. Reactive forms offer the ease of using reactive
patterns, testing, and validation.

With reactive forms, you create a tree of Angular form control objects in the component class and bind them to
native form control elements in the component template, using techniques described in this guide.

You create and manipulate form control objects directly in the component class. As the component class has
immediate access to both the data model and the form control structure, you can push data model values into
the form controls and pull user-changed values back out. The component can observe changes in form control
state and react to those changes.

One advantage of working with form control objects directly is that value and validity updates are always
synchronous and under your control. You won't encounter the timing issues that sometimes plague a template-

Reactive Forms

Introduction to Reactive Forms

Reactive forms

driven form and reactive forms can be easier to unit test.

In keeping with the reactive paradigm, the component preserves the immutability of the data model, treating it
as a pure source of original values. Rather than update the data model directly, the component extracts user
changes and forwards them to an external component or service, which does something with them (such as
saving them) and returns a new data model to the component that reflects the updated model state.

Using reactive form directives does not require you to follow all reactive priniciples, but it does facilitate the
reactive programming approach should you choose to use it.

Template-driven forms, introduced in the Template guide, take a completely different approach.

You place HTML form controls (such as <input> and <select>) in the component template and bind
them to data model properties in the component, using directives like ngModel .

You don't create Angular form control objects. Angular directives create them for you, using the information in
your data bindings. You don't push and pull data values. Angular handles that for you with ngModel . Angular
updates the mutable data model with user changes as they happen.

For this reason, the ngModel directive is not part of the ReactiveFormsModule.

While this means less code in the component class, template-driven forms are asynchronous which may
complicate development in more advanced scenarios.

{@a async-vs-sync}

Reactive forms are synchronous. Template-driven forms are asynchronous. It's a difference that matters.

In reactive forms, you create the entire form control tree in code. You can immediately update a value or drill
down through the descendents of the parent form because all controls are always available.

Template-driven forms delegate creation of their form controls to directives. To avoid "changed after checked"
errors, these directives take more than one cycle to build the entire control tree. That means you must wait a
tick before manipulating any of the controls from within the component class.

For example, if you inject the form control with a @ViewChild(NgForm) query and examine it in the
ngAfterViewInit lifecycle hook, you'll discover that it has no children. You must wait a tick, using
setTimeout , before you can extract a value from a control, test its validity, or set it to a new value.

Template-driven forms

Async vs. sync

The asynchrony of template-driven forms also complicates unit testing. You must wrap your test block in
async() or fakeAsync() to avoid looking for values in the form that aren't there yet. With reactive

forms, everything is available when you expect it to be.

Neither is "better". They're two different architectural paradigms, with their own strengths and weaknesses.
Choose the approach that works best for you. You may decide to use both in the same application.

The balance of this reactive forms guide explores the reactive paradigm and concentrates exclusively on
reactive forms techniques. For information on template-driven forms, see the Forms guide.

In the next section, you'll set up your project for the reactive form demo. Then you'll learn about the Angular
form classes and how to use them in a reactive form.

{@a setup}

Create a new project named angular-reactive-forms :

ng new angular-reactive-forms

{@a data-model}

The focus of this guide is a reactive forms component that edits a hero. You'll need a hero class and some
hero data.

Using the CLI, generate a new class named data-model :

ng generate class data-model

And copy the content below:

The file exports two classes and two constants. The Address and Hero classes define the application
data model. The heroes and states constants supply the test data.

{@a create-component}

Which is better, reactive or template-driven?

Setup

Create a data model

Generate a new component named HeroDetail :

ng generate component HeroDetail

And import:

Next, update the HeroDetailComponent class with a FormControl . FormControl is a directive
that allows you to create and manage a FormControl instance directly.

Here you are creating a FormControl called name . It will be bound in the template to an HTML input

box for the hero name.

A FormControl constructor accepts three, optional arguments: the initial data value, an array of validators,
and an array of async validators.

This simple control doesn't have data or validators. In real apps, most form controls have both.

This guide touches only briefly on `Validators`. For an in-depth look at them, read the [Form Validation]
(guide/form-validation) guide.

{@a create-template}

Now update the component's template, with the following markup.

To let Angular know that this is the input that you want to associate to the name FormControl in the
class, you need [formControl]="name" in the template on the <input> .

Disregard the `form-control` _CSS_ class. It belongs to the Bootstrap CSS library, not Angular. It _styles_ the
form but in no way impacts the logic of the form.

{@a import}

The HeroDetailComponent template uses formControlName directive from the
ReactiveFormsModule .

Create a reactive forms component

Create the template

Import the ReactiveFormsModule

Do the following two things in app.module.ts :

1. Use a JavaScript import statement to access the ReactiveFormsModule .
2. Add ReactiveFormsModule to the AppModule 's imports list.

{@a update}

Revise the AppComponent template so it displays the HeroDetailComponent .

{@a essentials}

It may be helpful to read a brief description of the core form classes.

AbstractControl is the abstract base class for the three concrete form control classes: FormControl ,
FormGroup , and FormArray . It provides their common behaviors and properties, some of which are

observable.

FormControl tracks the value and validity status of an individual form control. It corresponds to an HTML
form control such as an input box or selector.

FormGroup tracks the value and validity state of a group of AbstractControl instances. The group's
properties include its child controls. The top-level form in your component is a FormGroup .

FormArray tracks the value and validity state of a numerically indexed array of AbstractControl

instances.

You'll learn more about these classes as you work through this guide.

You used bootstrap CSS classes in the template HTML of both the AppComponent and the
HeroDetailComponent . Add the bootstrap CSS stylesheet to the head of styles.css :

Now that everything is wired up, the browser should display something like this:

Display the HeroDetailComponent

Essential form classes

Style the app

{@a formgroup}

Usually, if you have multiple FormControls, you'll want to register them within a parent FormGroup . This is
simple to do. To add a FormGroup , add it to the imports section of hero-detail.component.ts :

In the class, wrap the FormControl in a FormGroup called heroForm as follows:

Now that you've made changes in the class, they need to be reflected in the template. Update
hero-detail.component.html by replacing it with the following.

Notice that now the single input is in a form element. The novalidate attribute in the <form>

element prevents the browser from attempting native HTML validations.

formGroup is a reactive form directive that takes an existing FormGroup instance and associates it with
an HTML element. In this case, it associates the FormGroup you saved as heroForm with the form
element.

Because the class now has a FormGroup , you must update the template syntax for associating the input
with the corresponding FormControl in the component class. Without a parent FormGroup ,
[formControl]="name" worked earlier because that directive can stand alone, that is, it works without

being in a FormGroup . With a parent FormGroup , the name input needs the syntax
formControlName=name in order to be associated with the correct FormControl in the class. This

syntax tells Angular to look for the parent FormGroup , in this case heroForm , and then inside that group
to look for a FormControl called name .

Disregard the `form-group` _CSS_ class. It belongs to the Bootstrap CSS library, not Angular. Like the `form-
control` class, it _styles_ the form but in no way impacts its logic.

The form looks great. But does it work? When the user enters a name, where does the value go?

{@a json}

Add a FormGroup

The value goes into the form model that backs the group's FormControls . To see the form model, add the
following line after the closing form tag in the hero-detail.component.html :

The heroForm.value returns the form model. Piping it through the JsonPipe renders the model as
JSON in the browser:

The initial name property value is the empty string. Type into the name input box and watch the keystokes
appear in the JSON.

Great! You have the basics of a form.

In real life apps, forms get big fast. FormBuilder makes form development and maintenance easier.

{@a formbuilder}

The FormBuilder class helps reduce repetition and clutter by handling details of control creation for you.

To use FormBuilder , you need to import it into hero-detail.component.ts :

Use it now to refactor the HeroDetailComponent into something that's a little easier to read and write, by
following this plan:

Explicitly declare the type of the heroForm property to be FormGroup ; you'll initialize it later.
Inject a FormBuilder into the constructor.
Add a new method that uses the FormBuilder to define the heroForm ; call it createForm .
Call createForm in the constructor.

The revised HeroDetailComponent looks like this:

Taking a look at the form model

Introduction to FormBuilder

FormBuilder.group is a factory method that creates a FormGroup . FormBuilder.group takes
an object whose keys and values are FormControl names and their definitions. In this example, the
name control is defined by its initial data value, an empty string.

Defining a group of controls in a single object makes for a compact, readable style. It beats writing an
equivalent series of new FormControl(...) statements.

{@a validators}

Though this guide doesn't go deeply into validations, here is one example that demonstrates the simplicity of
using Validators.required in reactive forms.

First, import the Validators symbol.

To make the name FormControl required, replace the name property in the FormGroup with an
array. The first item is the initial value for name ; the second is the required validator,
Validators.required .

Reactive validators are simple, composable functions. Configuring validation is harder in template-driven forms
where you must wrap validators in a directive.

Update the diagnostic message at the bottom of the template to display the form's validity status.

The browser displays the following:

Validators.required is working. The status is INVALID because the input box has no value. Type
into the input box to see the status change from INVALID to VALID .

In a real app, you'd replace the diagnosic message with a user-friendly experience.

Validators.required

Using Validators.required is optional for the rest of the guide. It remains in each of the following
examples with the same configuration.

For more on validating Angular forms, see the Form Validation guide.

A hero has more than a name. A hero has an address, a super power and sometimes a sidekick too.

The address has a state property. The user will select a state with a <select> box and you'll populate the
<option> elements with states. So import states from data-model.ts .

Declare the states property and add some address FormControls to the heroForm as follows.

Then add corresponding markup in hero-detail.component.html within the form element.

Reminder: Ignore the many mentions of `form-group`, `form-control`, `center-block`, and `checkbox` in this
markup. Those are _bootstrap_ CSS classes that Angular itself ignores. Pay attention to the `formGroupName`
and `formControlName` attributes. They are the Angular directives that bind the HTML controls to the Angular
`FormGroup` and `FormControl` properties in the component class.

The revised template includes more text inputs, a select box for the state , radio buttons for the power ,
and a checkbox for the sidekick .

You must bind the option's value property with [value]="state" . If you do not bind the value, the select
shows the first option from the data model.

The component class defines control properties without regard for their representation in the template. You
define the state , power , and sidekick controls the same way you defined the name control. You
tie these controls to the template HTML elements in the same way, specifying the FormControl name with
the formControlName directive.

See the API reference for more information about radio buttons, selects, and checkboxes.

{@a grouping}

This form is getting big and unwieldy. You can group some of the related FormControls into a nested
FormGroup . The street , city , state , and zip are properties that would make a good

address FormGroup . Nesting groups and controls in this way allows you to mirror the hierarchical structure
of the data model and helps track validation and state for related sets of controls.

More FormControls

Nested FormGroups

You used the FormBuilder to create one FormGroup in this component called heroForm . Let that
be the parent FormGroup . Use FormBuilder again to create a child FormGroup that encapsulates
the address controls; assign the result to a new address property of the parent FormGroup .

You’ve changed the structure of the form controls in the component class; you must make corresponding
adjustments to the component template.

In hero-detail.component.html , wrap the address-related FormControls in a div . Add a
formGroupName directive to the div and bind it to "address" . That's the property of the address

child FormGroup within the parent FormGroup called heroForm .

To make this change visually obvious, slip in an <h4> header near the top with the text, Secret Lair. The new
address HTML looks like this:

After these changes, the JSON output in the browser shows the revised form model with the nested address
FormGroup :

Great! You’ve made a group and you can see that the template and the form model are talking to one another.

{@a properties}

At the moment, you're dumping the entire form model onto the page. Sometimes you're interested only in the
state of one particular FormControl .

You can inspect an individual FormControl within a form by extracting it with the .get() method. You
can do this within the component class or display it on the page by adding the following to the template,
immediately after the {{form.value | json}} interpolation as follows:

To get the state of a FormControl that’s inside a FormGroup , use dot notation to path to the control.

You can use this technique to display any property of a FormControl such as one of the following:

Inspect FormControl Properties

Property Description

myControl.value the value of a `FormControl`.

myControl.status the validity of a `FormControl`. Possible values: `VALID`, `INVALID`,
`PENDING`, or `DISABLED`.

myControl.pristine `true` if the user has _not_ changed the value in the UI. Its opposite is
`myControl.dirty`.

myControl.untouched `true` if the control user has not yet entered the HTML control and
triggered its blur event. Its opposite is `myControl.touched`.

Learn about other FormControl properties in the AbstractControl API reference.

One common reason for inspecting FormControl properties is to make sure the user entered valid values.
Read more about validating Angular forms in the Form Validation guide.

{@a data-model-form-model}

At the moment, the form is displaying empty values. The HeroDetailComponent should display values of
a hero, possibly a hero retrieved from a remote server.

In this app, the HeroDetailComponent gets its hero from a parent HeroListComponent

The hero from the server is the data model. The FormControl structure is the form model.

The component must copy the hero values in the data model into the form model. There are two important
implications:

1. The developer must understand how the properties of the data model map to the properties of the form
model.

2. User changes flow from the DOM elements to the form model, not to the data model. The form controls
never update the data model.

The form and data model structures need not match exactly. You often present a subset of the data model on a
particular screen. But it makes things easier if the shape of the form model is close to the shape of the data
model.

In this HeroDetailComponent , the two models are quite close.

The data model and the form model

Recall the definition of Hero in data-model.ts :

Here, again, is the component's FormGroup definition.

There are two significant differences between these models:

1. The Hero has an id . The form model does not because you generally don't show primary keys to
users.

2. The Hero has an array of addresses. This form model presents only one address, a choice revisited
below.

Nonetheless, the two models are pretty close in shape and you'll see in a moment how this alignment facilitates
copying the data model properties to the form model with the patchValue and setValue methods.

Take a moment to refactor the address FormGroup definition for brevity and clarity as follows:

Also be sure to update the import from data-model so you can reference the Hero and Address

classes:

{@a set-data}

Previously you created a control and initialized its value at the same time. You can also initialize or reset the
values later with the setValue and patchValue methods.

With setValue , you assign every form control value at once by passing in a data object whose properties
exactly match the form model behind the FormGroup .

The setValue method checks the data object thoroughly before assigning any form control values.

It will not accept a data object that doesn't match the FormGroup structure or is missing values for any control
in the group. This way, it can return helpful error messages if you have a typo or if you've nested controls
incorrectly. patchValue will fail silently.

On the other hand, setValue will catch the error and report it clearly.

Notice that you can almost use the entire hero as the argument to setValue because its shape is
similar to the component's FormGroup structure.

Populate the form model with setValue and patchValue

setValue

You can only show the hero's first address and you must account for the possibility that the hero has no
addresses at all. This explains the conditional setting of the address property in the data object argument:

With patchValue , you can assign values to specific controls in a FormGroup by supplying an object of
key/value pairs for just the controls of interest.

This example sets only the form's name control.

With patchValue you have more flexibility to cope with wildly divergent data and form models. But unlike
setValue , patchValue cannot check for missing control values and does not throw helpful errors.

Now you know how to set the form model values. But when do you set them? The answer depends upon when
the component gets the data model values.

The HeroDetailComponent in this reactive forms sample is nested within a master/detail
HeroListComponent (discussed below). The HeroListComponent displays hero names to the user.

When the user clicks on a hero, the list component passes the selected hero into the
HeroDetailComponent by binding to its hero input property.

In this approach, the value of hero in the HeroDetailComponent changes every time the user selects
a new hero. You should call setValue in the ngOnChanges hook, which Angular calls whenever the input
hero property changes as the following steps demonstrate.

First, import the OnChanges and Input symbols in hero-detail.component.ts .

Add the hero input property.

Add the ngOnChanges method to the class as follows:

You should reset the form when the hero changes so that control values from the previous hero are cleared
and status flags are restored to the pristine state. You could call reset at the top of ngOnChanges like
this.

The reset method has an optional state value so you can reset the flags and the control values at the
same time. Internally, reset passes the argument to setValue . A little refactoring and ngOnChanges

becomes this:

patchValue

When to set form model values (ngOnChanges)

reset the form flags

{@a hero-list}

The HeroDetailComponent is a nested sub-component of the HeroListComponent in a master/detail
view. Together they look a bit like this:

The HeroListComponent uses an injected HeroService to retrieve heroes from the server and then
presents those heroes to the user as a series of buttons. The HeroService emulates an HTTP service. It
returns an Observable of heroes that resolves after a short delay, both to simulate network latency and to
indicate visually the necessarily asynchronous nature of the application.

When the user clicks on a hero, the component sets its selectedHero property which is bound to the
hero input property of the HeroDetailComponent . The HeroDetailComponent detects the

changed hero and re-sets its form with that hero's data values.

A "Refresh" button clears the hero list and the current selected hero before refetching the heroes.

The remaining HeroListComponent and HeroService implementation details are not relevant to
understanding reactive forms. The techniques involved are covered elsewhere in the documentation, including
the Tour of Heroes here and here.

If you're coding along with the steps in this reactive forms tutorial, generate the pertinent files based on the
source code displayed below. Notice that hero-list.component.ts imports Observable and
finally while hero.service.ts imports Observable , of , and delay from rxjs . Then

return here to learn about form array properties.

{@a form-array}

Create the HeroListComponent and HeroService

So far, you've seen FormControls and FormGroups . A FormGroup is a named object whose
property values are FormControls and other FormGroups .

Sometimes you need to present an arbitrary number of controls or groups. For example, a hero may have zero,
one, or any number of addresses.

The Hero.addresses property is an array of Address instances. An address FormGroup can
display one Address . An Angular FormArray can display an array of address FormGroups .

To get access to the FormArray class, import it into hero-detail.component.ts :

To work with a FormArray you do the following:

1. Define the items (FormControls or FormGroups) in the array.

2. Initialize the array with items created from data in the data model.

3. Add and remove items as the user requires.

In this guide, you define a FormArray for Hero.addresses and let the user add or modify addresses
(removing addresses is your homework).

You’ll need to redefine the form model in the HeroDetailComponent constructor, which currently only
displays the first hero address in an address FormGroup .

From the user's point of view, heroes don't have addresses. Addresses are for mere mortals. Heroes have
secret lairs! Replace the address FormGroup definition with a secretLairs FormArray definition:

Changing the form control name from `address` to `secretLairs` drives home an important point: the _form
model_ doesn't have to match the _data model_. Obviously there has to be a relationship between the two. But
it can be anything that makes sense within the application domain. _Presentation_ requirements often differ
from _data_ requirements. The reactive forms approach both emphasizes and facilitates this distinction.

The default form displays a nameless hero with no addresses.

You need a method to populate (or repopulate) the secretLairs with actual hero addresses whenever the parent

Use FormArray to present an array of FormGroups

From address to secret lairs

Initialize the "secretLairs" FormArray

HeroListComponent sets the HeroDetailComponent.hero input property to a new Hero .

The following setAddresses method replaces the secretLairs FormArray with a new FormArray ,
initialized by an array of hero address FormGroups .

Notice that you replace the previous FormArray with the FormGroup.setControl method, not with
setValue . You're replacing a control, not the value of a control.

Notice also that the secretLairs FormArray contains FormGroups , not Addresses .

The HeroDetailComponent should be able to display, add, and remove items from the secretLairs
FormArray .

Use the FormGroup.get method to acquire a reference to that FormArray . Wrap the expression in a
secretLairs convenience property for clarity and re-use.

The current HTML template displays a single address FormGroup . Revise it to display zero, one, or more of
the hero's address FormGroups .

This is mostly a matter of wrapping the previous template HTML for an address in a <div> and repeating
that <div> with *ngFor .

The trick lies in knowing how to write the *ngFor . There are three key points:

1. Add another wrapping <div> , around the <div> with *ngFor , and set its formArrayName

directive to "secretLairs" . This step establishes the secretLairs FormArray as the context for
form controls in the inner, repeated HTML template.

2. The source of the repeated items is the FormArray.controls , not the FormArray itself. Each
control is an address FormGroup , exactly what the previous (now repeated) template HTML expected.

3. Each repeated FormGroup needs a unique formGroupName which must be the index of the
FormGroup in the FormArray . You'll re-use that index to compose a unique label for each address.

Here's the skeleton for the secret lairs section of the HTML template:

Here's the complete template for the secret lairs section:

Get the FormArray

Display the FormArray

Add an addLair method that gets the secretLairs FormArray and appends a new address
FormGroup to it.

Place a button on the form so the user can add a new secret lair and wire it to the component's addLair

method.

Be sure to **add the `type="button"` attribute**. In fact, you should always specify a button's `type`. Without an
explicit type, the button type defaults to "submit". When you later add a _form submit_ action, every "submit"
button triggers the submit action which might do something like save the current changes. You do not want to
save changes when the user clicks the _Add a Secret Lair_ button.

Back in the browser, select the hero named "Magneta". "Magneta" doesn't have an address, as you can see in
the diagnostic JSON at the bottom of the form.

Click the "Add a Secret Lair" button. A new address section appears. Well done!

This example can add addresses but it can't remove them. For extra credit, write a removeLair method
and wire it to a button on the repeating address HTML.

{@a observe-control}

Angular calls ngOnChanges when the user picks a hero in the parent HeroListComponent . Picking a
hero changes the HeroDetailComponent.hero input property.

Angular does not call ngOnChanges when the user modifies the hero's name or secret lairs. Fortunately,
you can learn about such changes by subscribing to one of the form control properties that raises a change
event.

These are properties, such as valueChanges , that return an RxJS Observable . You don't need to
know much about RxJS Observable to monitor form control values.

Add a new lair to the FormArray

Try it!

Remove a lair

Observe control changes

Add the following method to log changes to the value of the name FormControl .

Call it in the constructor, after creating the form.

The logNameChange method pushes name-change values into a nameChangeLog array. Display that
array at the bottom of the component template with this *ngFor binding:

Return to the browser, select a hero (e.g, "Magneta"), and start typing in the name input box. You should see a
new name in the log after each keystroke.

An interpolation binding is the easier way to display a name change. Subscribing to an observable form control
property is handy for triggering application logic within the component class.

{@a save}

The HeroDetailComponent captures user input but it doesn't do anything with it. In a real app, you'd
probably save those hero changes. In a real app, you'd also be able to revert unsaved changes and resume
editing. After you implement both features in this section, the form will look like this:

In this sample application, when the user submits the form, the HeroDetailComponent will pass an

When to use it

Save form data

Save

instance of the hero data model to a save method on the injected HeroService .

This original hero had the pre-save values. The user's changes are still in the form model. So you create a
new hero from a combination of original hero values (the hero.id) and deep copies of the changed
form model values, using the prepareSaveHero helper.

Address deep copy Had you assigned the `formModel.secretLairs` to `saveHero.addresses` (see line
commented out), the addresses in `saveHero.addresses` array would be the same objects as the lairs in the
`formModel.secretLairs`. A user's subsequent changes to a lair street would mutate an address street in the
`saveHero`. The `prepareSaveHero` method makes copies of the form model's `secretLairs` objects so that
can't happen.

The user cancels changes and reverts the form to the original state by pressing the Revert button.

Reverting is easy. Simply re-execute the ngOnChanges method that built the form model from the original,
unchanged hero data model.

Add the "Save" and "Revert" buttons near the top of the component's template:

The buttons are disabled until the user "dirties" the form by changing a value in any of its form controls
(heroForm.dirty).

Clicking a button of type "submit" triggers the ngSubmit event which calls the component's
onSubmit method. Clicking the revert button triggers a call to the component's revert method. Users

now can save or revert changes.

This is the final step in the demo. Try the .

How to create a reactive form component and its corresponding template.
How to use FormBuilder to simplify coding a reactive form.
Grouping FormControls .
Inspecting FormControl properties.
Setting data with patchValue and setValue .
Adding groups dynamically with FormArray .
Observing changes to the value of a FormControl .

Revert (cancel changes)

Buttons

Summary

Saving form changes.

{@a source-code}

The key files of the final version are as follows:

You can download the complete source for all steps in this guide from the Reactive Forms Demo live example.

The Angular Router enables navigation from one view to the next as users perform application tasks.

This guide covers the router's primary features, illustrating them through the evolution of a small application
that you can run live in the browser.

The browser is a familiar model of application navigation:

Enter a URL in the address bar and the browser navigates to a corresponding page.
Click links on the page and the browser navigates to a new page.
Click the browser's back and forward buttons and the browser navigates backward and forward through
the history of pages you've seen.

The Angular Router ("the router") borrows from this model. It can interpret a browser URL as an instruction
to navigate to a client-generated view. It can pass optional parameters along to the supporting view component
that help it decide what specific content to present. You can bind the router to links on a page and it will
navigate to the appropriate application view when the user clicks a link. You can navigate imperatively when
the user clicks a button, selects from a drop box, or in response to some other stimulus from any source. And
the router logs activity in the browser's history journal so the back and forward buttons work as well.

{@a basics}

This guide proceeds in phases, marked by milestones, starting from a simple two-pager and building toward a
modular, multi-view design with child routes.

An introduction to a few core router concepts will help orient you to the details that follow.

{@a basics-base-href}

Most routing applications should add a <base> element to the index.html as the first child in the
<head> tag to tell the router how to compose navigation URLs.

Routing & Navigation

Overview

The Basics

<base href>

If the app folder is the application root, as it is for the sample application, set the href value exactly as
shown here.

{@a basics-router-imports}

The Angular Router is an optional service that presents a particular component view for a given URL. It is not
part of the Angular core. It is in its own library package, @angular/router . Import what you need from it
as you would from any other Angular package.

You'll learn about more options in the [details below](#browser-url-styles).

{@a basics-config}

A routed Angular application has one singleton instance of the Router service. When the browser's URL
changes, that router looks for a corresponding Route from which it can determine the component to display.

A router has no routes until you configure it. The following example creates four route definitions, configures
the router via the RouterModule.forRoot method, and adds the result to the AppModule 's
imports array.

{@a example-config}

The appRoutes array of routes describes how to navigate. Pass it to the RouterModule.forRoot

method in the module imports to configure the router.

Each Route maps a URL path to a component. There are no leading slashes in the path. The router
parses and builds the final URL for you, allowing you to use both relative and absolute paths when navigating
between application views.

The :id in the second route is a token for a route parameter. In a URL such as /hero/42 , "42" is the
value of the id parameter. The corresponding HeroDetailComponent will use that value to find and
present the hero whose id is 42. You'll learn more about route parameters later in this guide.

The data property in the third route is a place to store arbitrary data associated with this specific route. The
data property is accessible within each activated route. Use it to store items such as page titles, breadcrumb
text, and other read-only, static data. You'll use the resolve guard to retrieve dynamic data later in the guide.

The empty path in the fourth route represents the default path for the application, the place to go when the

Router imports

Configuration

path in the URL is empty, as it typically is at the start. This default route redirects to the route for the
/heroes URL and, therefore, will display the HeroesListComponent .

The ** path in the last route is a wildcard. The router will select this route if the requested URL doesn't
match any paths for routes defined earlier in the configuration. This is useful for displaying a "404 - Not Found"
page or redirecting to another route.

The order of the routes in the configuration matters and this is by design. The router uses a first-match
wins strategy when matching routes, so more specific routes should be placed above less specific routes. In
the configuration above, routes with a static path are listed first, followed by an empty path route, that matches
the default route. The wildcard route comes last because it matches every URL and should be selected only if
no other routes are matched first.

If you need to see what events are happening during the navigation lifecycle, there is the enableTracing option
as part of the router's default configuration. This outputs each router event that took place during each
navigation lifecycle to the browser console. This should only be used for debugging purposes. You set the
enableTracing: true option in the object passed as the second argument to the
RouterModule.forRoot() method.

{@a basics-router-outlet}

Given this configuration, when the browser URL for this application becomes /heroes , the router matches
that URL to the route path /heroes and displays the HeroListComponent after a RouterOutlet

that you've placed in the host view's HTML.

<router-outlet></router-outlet> <!-- Routed views go here -->

{@a basics-router-links}

Now you have routes configured and a place to render them, but how do you navigate? The URL could arrive
directly from the browser address bar. But most of the time you navigate as a result of some user action such
as the click of an anchor tag.

Consider the following template:

The RouterLink directives on the anchor tags give the router control over those elements. The navigation
paths are fixed, so you can assign a string to the routerLink (a "one-time" binding).

Router outlet

Router links

Had the navigation path been more dynamic, you could have bound to a template expression that returned an
array of route link parameters (the link parameters array). The router resolves that array into a complete URL.

The RouterLinkActive directive on each anchor tag helps visually distinguish the anchor for the currently
selected "active" route. The router adds the active CSS class to the element when the associated
RouterLink becomes active. You can add this directive to the anchor or to its parent element.

{@a basics-router-state}

After the end of each successful navigation lifecycle, the router builds a tree of ActivatedRoute objects
that make up the current state of the router. You can access the current RouterState from anywhere in the
application using the Router service and the routerState property.

Each ActivatedRoute in the RouterState provides methods to traverse up and down the route tree
to get information from parent, child and sibling routes.

{@a activated-route}

The route path and parameters are available through an injected router service called the ActivatedRoute. It
has a great deal of useful information including:

Router state

Activated route

Property Description

url An `Observable` of the route path(s), represented as an array of strings for each
part of the route path.

data An `Observable` that contains the `data` object provided for the route. Also
contains any resolved values from the [resolve guard](#resolve-guard).

paramMap An `Observable` that contains a [map](api/router/ParamMap) of the required and
[optional parameters](#optional-route-parameters) specific to the route. The map
supports retrieving single and multiple values from the same parameter.

queryParamMap An `Observable` that contains a [map](api/router/ParamMap) of the [query
parameters](#query-parameters) available to all routes. The map supports
retrieving single and multiple values from the query parameter.

fragment An `Observable` of the URL [fragment](#fragment) available to all routes.

outlet The name of the `RouterOutlet` used to render the route. For an unnamed outlet,
the outlet name is _primary_.

routeConfig The route configuration used for the route that contains the origin path.

parent The route's parent `ActivatedRoute` when this route is a [child route](#child-
routing-component).

firstChild Contains the first `ActivatedRoute` in the list of this route's child routes.

children Contains all the [child routes](#child-routing-component) activated under the
current route.

Two older properties are still available. They are less capable than their replacements, discouraged, and may
be deprecated in a future Angular version. **`params`** — An `Observable` that contains the required and
[optional parameters](#optional-route-parameters) specific to the route. Use `paramMap` instead.
`queryParams` — An `Observable` that contains the [query parameters](#query-parameters) available to all
routes. Use `queryParamMap` instead.

During each navigation, the Router emits navigation events through the Router.events property.
These events range from when the navigation starts and ends to many points in between. The full list of
navigation events is displayed in the table below.

Router events

Router Event Description

NavigationStart An [event](api/router/NavigationStart) triggered when navigation starts.

RoutesRecognized An [event](api/router/RoutesRecognized) triggered when the Router
parses the URL and the routes are recognized.

RouteConfigLoadStart An [event](api/router/RouteConfigLoadStart) triggered before the
`Router` [lazy loads](#asynchronous-routing) a route configuration.

RouteConfigLoadEnd An [event](api/router/RouteConfigLoadEnd) triggered after a route has
been lazy loaded.

NavigationEnd An [event](api/router/NavigationEnd) triggered when navigation ends
successfully.

NavigationCancel An [event](api/router/NavigationCancel) triggered when navigation is
canceled. This is due to a [Route Guard](#guards) returning false during
navigation.

NavigationError An [event](api/router/NavigationError) triggered when navigation fails
due to an unexpected error.

These events are logged to the console when the enableTracing option is enabled also. Since the events
are provided as an Observable , you can filter() for events of interest and subscribe() to them
to make decisions based on the sequence of events in the navigation process.

{@a basics-summary}

The application has a configured router. The shell component has a RouterOutlet where it can display
views produced by the router. It has RouterLink s that users can click to navigate via the router.

Here are the key Router terms and their meanings:

Summary

Router Part Meaning

Router Displays the application component for the active URL. Manages navigation
from one component to the next.

RouterModule A separate NgModule that provides the necessary service providers and
directives for navigating through application views.

Routes Defines an array of Routes, each mapping a URL path to a component.

Route Defines how the router should navigate to a component based on a URL
pattern. Most routes consist of a path and a component type.

RouterOutlet The directive (<router-outlet>) that marks where the router displays a
view.

RouterLink The directive for binding a clickable HTML element to a route. Clicking an
element with a routerLink directive that is bound to a string or a link
parameters array triggers a navigation.

RouterLinkActive The directive for adding/removing classes from an HTML element when an
associated routerLink contained on or inside the element becomes
active/inactive.

ActivatedRoute A service that is provided to each route component that contains route
specific information such as route parameters, static data, resolve data, global
query params, and the global fragment.

RouterState The current state of the router including a tree of the currently activated routes
together with convenience methods for traversing the route tree.

Link parameters array An array that the router interprets as a routing instruction. You can bind that
array to a RouterLink or pass the array as an argument to the
Router.navigate method.

Routing component An Angular component with a RouterOutlet that displays views based
on router navigations.

{@a sample-app-intro}

This guide describes development of a multi-page routed sample application. Along the way, it highlights

The sample application

design decisions and describes key features of the router such as:

Organizing the application features into modules.
Navigating to a component (Heroes link to "Heroes List").
Including a route parameter (passing the Hero id while routing to the "Hero Detail").
Child routes (the Crisis Center has its own routes).
The CanActivate guard (checking route access).
The CanActivateChild guard (checking child route access).
The CanDeactivate guard (ask permission to discard unsaved changes).
The Resolve guard (pre-fetching route data).
Lazy loading feature modules.
The CanLoad guard (check before loading feature module assets).

The guide proceeds as a sequence of milestones as if you were building the app step-by-step. But, it is not a
tutorial and it glosses over details of Angular application construction that are more thoroughly covered
elsewhere in the documentation.

The full source for the final version of the app can be seen and downloaded from the .

Imagine an application that helps the Hero Employment Agency run its business. Heroes need work and the
agency finds crises for them to solve.

The application has three main feature areas:

1. A Crisis Center for maintaining the list of crises for assignment to heroes.
2. A Heroes area for maintaining the list of heroes employed by the agency.
3. An Admin area to manage the list of crises and heroes.

Try it by clicking on this live example link.

Once the app warms up, you'll see a row of navigation buttons and the Heroes view with its list of heroes.

The sample application in action

Select one hero and the app takes you to a hero editing screen.

Alter the name. Click the "Back" button and the app returns to the heroes list which displays the changed hero
name. Notice that the name change took effect immediately.

Had you clicked the browser's back button instead of the "Back" button, the app would have returned you to the
heroes list as well. Angular app navigation updates the browser history as normal web navigation does.

Now click the Crisis Center link for a list of ongoing crises.

Select a crisis and the application takes you to a crisis editing screen. The Crisis Detail appears in a child view
on the same page, beneath the list.

Alter the name of a crisis. Notice that the corresponding name in the crisis list does not change.

Unlike Hero Detail, which updates as you type, Crisis Detail changes are temporary until you either save or
discard them by pressing the "Save" or "Cancel" buttons. Both buttons navigate back to the Crisis Center and
its list of crises.

Do not click either button yet. Click the browser back button or the "Heroes" link instead.

Up pops a dialog box.

You can say "OK" and lose your changes or click "Cancel" and continue editing.

Behind this behavior is the router's CanDeactivate guard. The guard gives you a chance to clean-up or
ask the user's permission before navigating away from the current view.

The Admin and Login buttons illustrate other router capabilities to be covered later in the guide. This
short introduction will do for now.

Proceed to the first application milestone.

{@a getting-started}

Begin with a simple version of the app that navigates between two empty views.

{@a base-href}

The router uses the browser's history.pushState for navigation. Thanks to pushState , you can make in-app
URL paths look the way you want them to look, e.g. localhost:3000/crisis-center . The in-app URLs
can be indistinguishable from server URLs.

Modern HTML5 browsers were the first to support pushState which is why many people refer to these
URLs as "HTML5 style" URLs.

HTML5 style navigation is the router default. In the [LocationStrategy and browser URL styles](#browser-url-
styles) Appendix, learn why HTML5 style is preferred, how to adjust its behavior, and how to switch to the older
hash (#) style, if necessary.

You must add a <base href> element to the app's index.html for pushState routing to work. The
browser uses the <base href> value to prefix relative URLs when referencing CSS files, scripts, and
images.

Add the <base> element just after the <head> tag. If the app folder is the application root, as it is for
this application, set the href value in index.html exactly as shown here.

Live example note
A live coding environment like Plunker sets the application base address dynamically so you can't specify a
fixed address. That's why the example code replaces the `` with a script that writes the `` tag on the fly.
<script>document.write('<base href="' + document.location + '" />');</script> You only need this trick for the live
example, not production code.

Milestone 1: Getting started with the router

Set the <base href>

{@a import}

Begin by importing some symbols from the router library. The Router is in its own @angular/router

package. It's not part of the Angular core. The router is an optional service because not all applications need
routing and, depending on your requirements, you may need a different routing library.

You teach the router how to navigate by configuring it with routes.

{@a route-config}

A router must be configured with a list of route definitions.

The first configuration defines an array of two routes with simple paths leading to the
CrisisListComponent and HeroListComponent .

Each definition translates to a Route object which has two things: a path , the URL path segment for this
route; and a component , the component associated with this route.

The router draws upon its registry of definitions when the browser URL changes or when application code tells
the router to navigate along a route path.

In simpler terms, you might say this of the first route:

When the browser's location URL changes to match the path segment /crisis-center , then the
router activates an instance of the CrisisListComponent and displays its view.

When the application requests navigation to the path /crisis-center , the router activates an
instance of CrisisListComponent , displays its view, and updates the browser's address location
and history with the URL for that path.

Here is the first configuration. Pass the array of routes, appRoutes , to the RouterModule.forRoot

method. It returns a module, containing the configured Router service provider, plus other providers that the
routing library requires. Once the application is bootstrapped, the Router performs the initial navigation
based on the current browser URL.

Adding the configured `RouterModule` to the `AppModule` is sufficient for simple route configurations. As the
application grows, you'll want to refactor the routing configuration into a separate file and create a **[Routing
Module](#routing-module)**, a special type of `Service Module` dedicated to the purpose of routing in feature

Importing from the router library

Define routes

modules.

Providing the RouterModule in the AppModule makes the Router available everywhere in the
application.

{@a shell}

The root AppComponent is the application shell. It has a title, a navigation bar with two links, and a router
outlet where the router swaps views on and off the page. Here's what you get:

{@a shell-template}

The corresponding component template looks like this:

{@a router-outlet}

The RouterOutlet is a directive from the router library that marks the spot in the template where the router
should display the views for that outlet.

The router adds the `` element to the DOM and subsequently inserts the navigated view element immediately
after the ``.

{@a router-link}

Above the outlet, within the anchor tags, you see attribute bindings to the RouterLink directive that look
like routerLink="..." .

The links in this example each have a string path, the path of a route that you configured earlier. There are no
route parameters yet.

You can also add more contextual information to the RouterLink by providing query string parameters or a

The AppComponent shell

RouterOutlet

RouterLink binding

URL fragment for jumping to different areas on the page. Query string parameters are provided through the
[queryParams] binding which takes an object (e.g. { name: 'value' }), while the URL fragment

takes a single value bound to the [fragment] input binding.

Learn about the how you can also use the _link parameters array_ in the [appendix below](#link-parameters-
array).

{@a router-link-active}

On each anchor tag, you also see property bindings to the RouterLinkActive directive that look like
routerLinkActive="..." .

The template expression to the right of the equals (=) contains a space-delimited string of CSS classes that the
Router will add when this link is active (and remove when the link is inactive). You can also set the
RouterLinkActive directive to a string of classes such as
[routerLinkActive]="'active fluffy'" or bind it to a component property that returns such a

string.

The RouterLinkActive directive toggles css classes for active RouterLink s based on the current
RouterState . This cascades down through each level of the route tree, so parent and child router links can

be active at the same time. To override this behavior, you can bind to the [routerLinkActiveOptions]

input binding with the { exact: true } expression. By using { exact: true } , a given
RouterLink will only be active if its URL is an exact match to the current URL.

{@a router-directives}

RouterLink , RouterLinkActive and RouterOutlet are directives provided by the Angular
RouterModule package. They are readily available for you to use in the template.

The current state of app.component.ts looks like this:

{@a wildcard}

You've created two routes in the app so far, one to /crisis-center and the other to /heroes . Any
other URL causes the router to throw an error and crash the app.

RouterLinkActive binding

Router directives

Wildcard route

Add a wildcard route to intercept invalid URLs and handle them gracefully. A wildcard route has a path
consisting of two asterisks. It matches every URL. The router will select this route if it can't match a route
earlier in the configuration. A wildcard route can navigate to a custom "404 Not Found" component or redirect
to an existing route.

The router selects the route with a [_first match wins_](#example-config) strategy. Wildcard routes are the least
specific routes in the route configuration. Be sure it is the _last_ route in the configuration.

To test this feature, add a button with a RouterLink to the HeroListComponent template and set the
link to "/sidekicks" .

The application will fail if the user clicks that button because you haven't defined a "/sidekicks" route
yet.

Instead of adding the "/sidekicks" route, define a wildcard route instead and have it navigate to a
simple PageNotFoundComponent .

Create the PageNotFoundComponent to display when users visit invalid URLs.

As with the other components, add the PageNotFoundComponent to the AppModule declarations.

Now when the user visits /sidekicks , or any other invalid URL, the browser displays "Page not found".
The browser address bar continues to point to the invalid URL.

{@a default-route}

When the application launches, the initial URL in the browser bar is something like:

localhost:3000

That doesn't match any of the concrete configured routes which means the router falls through to the wildcard
route and displays the PageNotFoundComponent .

The application needs a default route to a valid page. The default page for this app is the list of heroes. The
app should navigate there as if the user clicked the "Heroes" link or pasted localhost:3000/heroes into
the address bar.

{@a redirect}

The default route to heroes

Redirecting routes

The preferred solution is to add a redirect route that translates the initial relative URL ('') to the
desired default path (/heroes). The browser address bar shows .../heroes as if you'd navigated there
directly.

Add the default route somewhere above the wildcard route. It's just above the wildcard route in the following
excerpt showing the complete appRoutes for this milestone.

A redirect route requires a pathMatch property to tell the router how to match a URL to the path of a route.
The router throws an error if you don't. In this app, the router should select the route to the
HeroListComponent only when the entire URL matches '' , so set the pathMatch value to
'full' .

Technically, `pathMatch = 'full'` results in a route hit when the *remaining*, unmatched segments of the URL
match `''`. In this example, the redirect is in a top level route so the *remaining* URL and the *entire* URL are
the same thing. The other possible `pathMatch` value is `'prefix'` which tells the router to match the redirect
route when the *remaining* URL ***begins*** with the redirect route's _prefix_ path. Don't do that here. If the
`pathMatch` value were `'prefix'`, _every_ URL would match `''`. Try setting it to `'prefix'` then click the `Go to
sidekicks` button. Remember that's a bad URL and you should see the "Page not found" page. Instead, you're
still on the "Heroes" page. Enter a bad URL in the browser address bar. You're instantly re-routed to `/heroes`.
Every URL, good or bad, that falls through to _this_ route definition will be a match. The default route should
redirect to the `HeroListComponent` _only_ when the _entire_ url is `''`. Remember to restore the redirect to
`pathMatch = 'full'`. Learn more in Victor Savkin's [post on redirects]
(http://victorsavkin.com/post/146722301646/angular-router-empty-paths-componentless-routes).

You've got a very basic navigating app, one that can switch between two views when the user clicks a link.

You've learned how to do the following:

Load the router library.
Add a nav bar to the shell template with anchor tags, routerLink and routerLinkActive

directives.
Add a router-outlet to the shell template where views will be displayed.
Configure the router module with RouterModule.forRoot .
Set the router to compose HTML5 browser URLs.
handle invalid routes with a wildcard route.
navigate to the default route when the app launches with an empty path.

The rest of the starter app is mundane, with little interest from a router perspective. Here are the details for
readers inclined to build the sample through to this milestone.

Basics wrap up

The starter app's structure looks like this:

router-sample
src
app
app.component.ts
app.module.ts
crisis-list.component.ts
hero-list.component.ts
not-found.component.ts
main.ts
index.html
styles.css
tsconfig.json
node_modules ...
package.json

Here are the files discussed in this milestone.

{@a routing-module}

In the initial route configuration, you provided a simple setup with two routes used to configure the application
for routing. This is perfectly fine for simple routing. As the application grows and you make use of more
Router features, such as guards, resolvers, and child routing, you'll naturally want to refactor the routing

configuration into its own file. We recommend moving the routing information into a special-purpose module
called a Routing Module.

The Routing Module has several characteristics:

Separates routing concerns from other application concerns.
Provides a module to replace or remove when testing the application.
Provides a well-known location for routing service providers including guards and resolvers.
Does not declare components.

{@a routing-refactor}

Create a file named app-routing.module.ts in the /app folder to contain the routing module.

Milestone 2: Routing module

Refactor the routing configuration into a routing module

Import the CrisisListComponent and the HeroListComponent components just like you did in the
app.module.ts . Then move the Router imports and routing configuration, including
RouterModule.forRoot , into this routing module.

Following convention, add a class name AppRoutingModule and export it so you can import it later in
AppModule .

Finally, re-export the Angular RouterModule by adding it to the module exports array. By re-exporting
the RouterModule here and importing AppRoutingModule in AppModule , the components
declared in AppModule will have access to router directives such as RouterLink and
RouterOutlet .

After these steps, the file should look like this.

Next, update the app.module.ts file, first importing the newly created AppRoutingModule from
app-routing.module.ts , then replacing RouterModule.forRoot in the imports array with the
AppRoutingModule .

Later in this guide you will create [multiple routing modules](#hero-routing-module) and discover that you must
import those routing modules [in the correct order](#routing-module-order).

The application continues to work just the same, and you can use AppRoutingModule as the central place
to maintain future routing configuration.

{@a why-routing-module}

The Routing Module replaces the routing configuration in the root or feature module. Either configure routes in
the Routing Module or within the module itself but not in both.

The Routing Module is a design choice whose value is most obvious when the configuration is complex and
includes specialized guard and resolver services. It can seem like overkill when the actual configuration is dead
simple.

Some developers skip the Routing Module (for example, AppRoutingModule) when the configuration is
simple and merge the routing configuration directly into the companion module (for example, AppModule).

Choose one pattern or the other and follow that pattern consistently.

Most developers should always implement a Routing Module for the sake of consistency. It keeps the code
clean when configuration becomes complex. It makes testing the feature module easier. Its existence calls

Do you need a Routing Module?

attention to the fact that a module is routed. It is where developers expect to find and expand routing
configuration.

{@a heroes-feature}

You've seen how to navigate using the RouterLink directive. Now you'll learn the following:

Organize the app and routes into feature areas using modules.
Navigate imperatively from one component to another.
Pass required and optional information in route parameters.

This example recreates the heroes feature in the "Services" episode of the Tour of Heroes tutorial, and you'll be
copying much of the code from the .

Here's how the user will experience this version of the app:

Milestone 3: Heroes feature

A typical application has multiple feature areas, each dedicated to a particular business purpose.

While you could continue to add files to the src/app/ folder, that is unrealistic and ultimately not
maintainable. Most developers prefer to put each feature area in its own folder.

You are about to break up the app into different feature modules, each with its own concerns. Then you'll
import into the main module and navigate among them.

{@a heroes-functionality}

Follow these steps:

Create the src/app/heroes folder; you'll be adding files implementing hero management there.
Delete the placeholder hero-list.component.ts that's in the app folder.
Create a new hero-list.component.ts under src/app/heroes .
Copy into it the contents of the app.component.ts from the "Services" tutorial.
Make a few minor but necessary changes:

Delete the selector (routed components don't need them).
Delete the <h1> .
Relabel the <h2> to <h2>HEROES</h2> .
Delete the <hero-detail> at the bottom of the template.
Rename the AppComponent class to HeroListComponent .

Copy the hero-detail.component.ts and the hero.service.ts files into the heroes

subfolder.

Create a (pre-routing) heroes.module.ts in the heroes folder that looks like this:

When you're done, you'll have these hero management files:

src/app/heroes
hero-detail.component.ts
hero-list.component.ts
hero.service.ts
heroes.module.ts

{@a hero-routing-requirements}

Add heroes functionality

Hero feature routing requirements

The heroes feature has two interacting components, the hero list and the hero detail. The list view is self-
sufficient; you navigate to it, it gets a list of heroes and displays them.

The detail view is different. It displays a particular hero. It can't know which hero to show on its own. That
information must come from outside.

When the user selects a hero from the list, the app should navigate to the detail view and show that hero. You
tell the detail view which hero to display by including the selected hero's id in the route URL.

{@a hero-routing-module}

Create a new heroes-routing.module.ts in the heroes folder using the same techniques you
learned while creating the AppRoutingModule .

Put the routing module file in the same folder as its companion module file. Here both `heroes-
routing.module.ts` and `heroes.module.ts` are in the same `src/app/heroes` folder. Consider giving each
feature module its own route configuration file. It may seem like overkill early when the feature routes are
simple. But routes have a tendency to grow more complex and consistency in patterns pays off over time.

Import the hero components from their new locations in the src/app/heroes/ folder, define the two hero
routes, and export the HeroRoutingModule class.

Now that you have routes for the Heroes module, register them with the Router via the
RouterModule almost as you did in the AppRoutingModule .

There is a small but critical difference. In the AppRoutingModule , you used the static
RouterModule.forRoot method to register the routes and application level service providers. In a feature

module you use the static forChild method.

Only call `RouterModule.forRoot` in the root `AppRoutingModule` (or the `AppModule` if that's where you
register top level application routes). In any other module, you must call the **`RouterModule.forChild`**
method to register additional routes.

{@a adding-routing-module}

Add the HeroRoutingModule to the HeroModule just as you added AppRoutingModule to the
AppModule .

Hero feature route configuration

Add the routing module to the HeroesModule

Open heroes.module.ts . Import the HeroRoutingModule token from
heroes-routing.module.ts and add it to the imports array of the HeroesModule . The finished
HeroesModule looks like this:

{@a remove-duplicate-hero-routes}

The hero routes are currently defined in two places: in the HeroesRoutingModule , by way of the
HeroesModule , and in the AppRoutingModule .

Routes provided by feature modules are combined together into their imported module's routes by the router.
This allows you to continue defining the feature module routes without modifying the main route configuration.

But you don't want to define the same routes twice. Remove the HeroListComponent import and the
/heroes route from the app-routing.module.ts .

Leave the default and the wildcard routes! These are concerns at the top level of the application itself.

{@a merge-hero-routes}

The heroes feature module is ready, but the application doesn't know about the HeroesModule yet. Open
app.module.ts and revise it as follows.

Import the HeroesModule and add it to the imports array in the @NgModule metadata of the
AppModule .

Remove the HeroListComponent from the AppModule 's declarations because it's now provided
by the HeroesModule . This is important. There can be only one owner for a declared component. In this
case, the Heroes module is the owner of the Heroes components and is making them available to
components in the AppModule via the HeroesModule .

As a result, the AppModule no longer has specific knowledge of the hero feature, its components, or its
route details. You can evolve the hero feature with more components and different routes. That's a key benefit
of creating a separate module for each feature area.

After these steps, the AppModule should look like this:

{@a routing-module-order}

Remove duplicate hero routes

Import hero module into AppModule

Look at the module imports array. Notice that the AppRoutingModule is last. Most importantly, it
comes after the HeroesModule .

The order of route configuration matters. The router accepts the first route that matches a navigation request
path.

When all routes were in one AppRoutingModule , you put the default and wildcard routes last, after the
/heroes route, so that the router had a chance to match a URL to the /heroes route before hitting the

wildcard route and navigating to "Page not found".

The routes are no longer in one file. They are distributed across two modules, AppRoutingModule and
HeroesRoutingModule .

Each routing module augments the route configuration in the order of import. If you list AppRoutingModule

first, the wildcard route will be registered before the hero routes. The wildcard route — which matches every
URL — will intercept the attempt to navigate to a hero route.

Reverse the routing modules and see for yourself that a click of the heroes link results in "Page not found".
Learn about inspecting the runtime router configuration [below](#inspect-config "Inspect the router config").

{@a route-def-with-parameter}

Return to the HeroesRoutingModule and look at the route definitions again. The route to
HeroDetailComponent has a twist.

Notice the :id token in the path. That creates a slot in the path for a Route Parameter. In this case, the
router will insert the id of a hero into that slot.

If you tell the router to navigate to the detail component and display "Magneta", you expect a hero id to appear
in the browser URL like this:

localhost:3000/hero/15

If a user enters that URL into the browser address bar, the router should recognize the pattern and go to the
same "Magneta" detail view.

Route parameter: Required or optional?
Embedding the route parameter token, `:id`, in the route definition path is a good choice for this scenario
because the `id` is *required* by the `HeroDetailComponent` and because the value `15` in the path clearly

Module import order matters

Route definition with a parameter

distinguishes the route to "Magneta" from a route for some other hero.

{@a route-parameters}

After navigating to the HeroDetailComponent , you expect to see the details of the selected hero. You
need two pieces of information: the routing path to the component and the hero's id .

Accordingly, the link parameters array has two items: the routing path and a route parameter that specifies the
id of the selected hero.

The router composes the destination URL from the array like this: localhost:3000/hero/15 .

How does the target `HeroDetailComponent` learn about that `id`? Don't analyze the URL. Let the router do it.
The router extracts the route parameter (`id:15`) from the URL and supplies it to the `HeroDetailComponent`
via the `ActivatedRoute` service.

{@a activated-route}

Import the Router , ActivatedRoute , and ParamMap tokens from the router package.

Import the switchMap operator because you need it later to process the Observable route parameters.

{@a hero-detail-ctor}

As usual, you write a constructor that asks Angular to inject services that the component requires and
reference them as private variables.

Later, in the ngOnInit method, you use the ActivatedRoute service to retrieve the parameters for the
route, pull the hero id from the parameters and retrieve the hero to display.

The paramMap processing is a bit tricky. When the map changes, you get() the id parameter from
the changed parameters.

Then you tell the HeroService to fetch the hero with that id and return the result of the
HeroService request.

You might think to use the RxJS map operator. But the HeroService returns an Observable<Hero> .
So you flatten the Observable with the switchMap operator instead.

Setting the route parameters in the list view

Activated Route in action

The switchMap operator also cancels previous in-flight requests. If the user re-navigates to this route with a
new id while the HeroService is still retrieving the old id , switchMap discards that old request
and returns the hero for the new id .

The observable Subscription will be handled by the AsyncPipe and the component's hero

property will be (re)set with the retrieved hero.

The ParamMap API is inspired by the URLSearchParams interface. It provides methods to handle parameter
access for both route parameters (paramMap) and query parameters (queryParamMap).

Member Description

has(name) Returns `true` if the parameter name is in the map of parameters.

get(name) Returns the parameter name value (a `string`) if present, or `null` if the parameter
name is not in the map. Returns the _first_ element if the parameter value is
actually an array of values.

getAll(name) Returns a `string array` of the parameter name value if found, or an empty `array` if
the parameter name value is not in the map. Use `getAll` when a single parameter
could have multiple values.

keys Returns a `string array` of all parameter names in the map.

{@a reuse}

In this example, you retrieve the route parameter map from an Observable . That implies that the route
parameter map can change during the lifetime of this component.

They might. By default, the router re-uses a component instance when it re-navigates to the same component
type without visiting a different component first. The route parameters could change each time.

Suppose a parent component navigation bar had "forward" and "back" buttons that scrolled through the list of
heroes. Each click navigated imperatively to the HeroDetailComponent with the next or previous id .

You don't want the router to remove the current HeroDetailComponent instance from the DOM only to re-
create it for the next id . That could be visibly jarring. Better to simply re-use the same component instance
and update the parameter.

ParamMap API

Observable paramMap and component reuse

Unfortunately, ngOnInit is only called once per component instantiation. You need a way to detect when
the route parameters change from within the same instance. The observable paramMap property handles
that beautifully.

When subscribing to an observable in a component, you almost always arrange to unsubscribe when the
component is destroyed. There are a few exceptional observables where this is not necessary. The
`ActivatedRoute` observables are among the exceptions. The `ActivatedRoute` and its observables are
insulated from the `Router` itself. The `Router` destroys a routed component when it is no longer needed and
the injected `ActivatedRoute` dies with it. Feel free to unsubscribe anyway. It is harmless and never a bad
practice.

{@a snapshot}

This application won't re-use the HeroDetailComponent . The user always returns to the hero list to select
another hero to view. There's no way to navigate from one hero detail to another hero detail without visiting the
list component in between. Therefore, the router creates a new HeroDetailComponent instance every
time.

When you know for certain that a HeroDetailComponent instance will never, never, ever be re-used, you
can simplify the code with the snapshot.

The route.snapshot provides the initial value of the route parameter map. You can access the
parameters directly without subscribing or adding observable operators. It's much simpler to write and read:

Remember: you only get the _initial_ value of the parameter map with this technique. Stick with the
observable `paramMap` approach if there's even a chance that the router could re-use the component. This
sample stays with the observable `paramMap` strategy just in case.

{@a nav-to-list}

The HeroDetailComponent has a "Back" button wired to its gotoHeroes method that navigates
imperatively back to the HeroListComponent .

The router navigate method takes the same one-item link parameters array that you can bind to a
[routerLink] directive. It holds the path to the HeroListComponent :

{@a optional-route-parameters}

Snapshot: the no-observable alternative

Navigating back to the list component

Use route parameters to specify a required parameter value within the route URL as you do when navigating to
the HeroDetailComponent in order to view the hero with id 15:

localhost:3000/hero/15

You can also add optional information to a route request. For example, when returning to the heroes list from
the hero detail view, it would be nice if the viewed hero was preselected in the list.

You'll implement this feature in a moment by including the viewed hero's id in the URL as an optional
parameter when returning from the HeroDetailComponent .

Optional information takes other forms. Search criteria are often loosely structured, e.g., name='wind*' .
Multiple values are common— after='12/31/2015' & before='1/1/2017' —in no particular order
— before='1/1/2017' & after='12/31/2015' — in a variety of formats
— during='currentYear' .

These kinds of parameters don't fit easily in a URL path. Even if you could define a suitable URL token
scheme, doing so greatly complicates the pattern matching required to translate an incoming URL to a named
route.

Optional parameters are the ideal vehicle for conveying arbitrarily complex information during navigation.
Optional parameters aren't involved in pattern matching and afford flexibility of expression.

The router supports navigation with optional parameters as well as required route parameters. Define optional
parameters in a separate object after you define the required route parameters.

In general, prefer a required route parameter when the value is mandatory (for example, if necessary to
distinguish one route path from another); prefer an optional parameter when the value is optional, complex,
and/or multivariate.

{@a optionally-selecting}

Route Parameters: Required or optional?

Heroes list: optionally selecting a hero

When navigating to the HeroDetailComponent you specified the required id of the hero-to-edit in the
route parameter and made it the second item of the link parameters array.

The router embedded the id value in the navigation URL because you had defined it as a route parameter
with an :id placeholder token in the route path :

When the user clicks the back button, the HeroDetailComponent constructs another link parameters
array which it uses to navigate back to the HeroListComponent .

This array lacks a route parameter because you had no reason to send information to the
HeroListComponent .

Now you have a reason. You'd like to send the id of the current hero with the navigation request so that the
HeroListComponent can highlight that hero in its list. This is a nice-to-have feature; the list will display

perfectly well without it.

Send the id with an object that contains an optional id parameter. For demonstration purposes, there's
an extra junk parameter (foo) in the object that the HeroListComponent should ignore. Here's the
revised navigation statement:

The application still works. Clicking "back" returns to the hero list view.

Look at the browser address bar.

It should look something like this, depending on where you run it:

localhost:3000/heroes;id=15;foo=foo

The id value appears in the URL as (;id=15;foo=foo), not in the URL path. The path for the "Heroes"
route doesn't have an :id token.

The optional route parameters are not separated by "?" and "&" as they would be in the URL query string. They
are separated by semicolons ";" This is matrix URL notation — something you may not have seen before.

Matrix URL notation is an idea first introduced in a [1996 proposal]
(http://www.w3.org/DesignIssues/MatrixURIs.html) by the founder of the web, Tim Berners-Lee. Although
matrix notation never made it into the HTML standard, it is legal and it became popular among browser routing
systems as a way to isolate parameters belonging to parent and child routes. The Router is such a system and
provides support for the matrix notation across browsers. The syntax may seem strange to you but users are
unlikely to notice or care as long as the URL can be emailed and pasted into a browser address bar as this one
can.

{@a route-parameters-activated-route}

The list of heroes is unchanged. No hero row is highlighted.

The *does* highlight the selected row because it demonstrates the final state of the application which includes
the steps you're *about* to cover. At the moment this guide is describing the state of affairs *prior* to those
steps.

The HeroListComponent isn't expecting any parameters at all and wouldn't know what to do with them.
You can change that.

Previously, when navigating from the HeroListComponent to the HeroDetailComponent , you
subscribed to the route parameter map Observable and made it available to the
HeroDetailComponent in the ActivatedRoute service. You injected that service in the constructor of

the HeroDetailComponent .

This time you'll be navigating in the opposite direction, from the HeroDetailComponent to the
HeroListComponent .

First you extend the router import statement to include the ActivatedRoute service symbol:

Import the switchMap operator to perform an operation on the Observable of route parameter map.

Then you inject the ActivatedRoute in the HeroListComponent constructor.

The ActivatedRoute.paramMap property is an Observable map of route parameters. The
paramMap emits a new map of values that includes id when the user navigates to the component. In
ngOnInit you subscribe to those values, set the selectedId , and get the heroes.

Update the template with a class binding. The binding adds the selected CSS class when the comparison
returns true and removes it when false . Look for it within the repeated tag as shown here:

When the user navigates from the heroes list to the "Magneta" hero and back, "Magneta" appears selected:

The optional foo route parameter is harmless and continues to be ignored.

{@a route-animation}

Route parameters in the ActivatedRoute service

The heroes feature module is almost complete, but what is a feature without some smooth transitions?

This section shows you how to add some animations to the HeroDetailComponent .

First import BrowserAnimationsModule :

Create an animations.ts file in the root src/app/ folder. The contents look like this:

This file does the following:

Imports the animation symbols that build the animation triggers, control state, and manage transitions
between states.

Exports a constant named slideInDownAnimation set to an animation trigger named
routeAnimation ; animated components will refer to this name.

Specifies the wildcard state , * , that matches any animation state that the route component is in.

Defines two transitions, one to ease the component in from the left of the screen as it enters the
application view (:enter), the other to animate the component down as it leaves the application view
(:leave).

You could create more triggers with different transitions for other route components. This trigger is sufficient for
the current milestone.

Back in the HeroDetailComponent , import the slideInDownAnimation from
'./animations.ts . Add the HostBinding decorator to the imports from @angular/core ; you'll

need it in a moment.

Add an animations array to the @Component metadata's that contains the
slideInDownAnimation .

Then add three @HostBinding properties to the class to set the animation and styles for the route
component's element.

The '@routeAnimation' passed to the first @HostBinding matches the name of the
slideInDownAnimation trigger, routeAnimation . Set the routeAnimation property to true

because you only care about the :enter and :leave states.

The other two @HostBinding properties style the display and position of the component.

The HeroDetailComponent will ease in from the left when routed to and will slide down when navigating

Adding animations to the routed component

away.

Applying route animations to individual components works for a simple demo, but in a real life app, it is better to
animate routes based on _route paths_.

{@a milestone-3-wrap-up}

You've learned how to do the following:

Organize the app into feature areas.
Navigate imperatively from one component to another.
Pass information along in route parameters and subscribe to them in the component.
Import the feature area NgModule into the AppModule .
Apply animations to the route component.

After these changes, the folder structure looks like this:

router-sample
src
app
heroes
hero-detail.component.ts
hero-list.component.ts
hero.service.ts
heroes.module.ts
heroes-routing.module.ts
app.component.ts
app.module.ts
app-routing.module.ts
crisis-list.component.ts
main.ts
index.html
styles.css
tsconfig.json
node_modules ...
package.json

Here are the relevant files for this version of the sample application.

Milestone 3 wrap up

{@a milestone-4}

It's time to add real features to the app's current placeholder crisis center.

Begin by imitating the heroes feature:

Delete the placeholder crisis center file.
Create an app/crisis-center folder.
Copy the files from app/heroes into the new crisis center folder.
In the new files, change every mention of "hero" to "crisis", and "heroes" to "crises".

You'll turn the CrisisService into a purveyor of mock crises instead of mock heroes:

The resulting crisis center is a foundation for introducing a new concept—child routing. You can leave Heroes
in its current state as a contrast with the Crisis Center and decide later if the differences are worthwhile.

In keeping with the *Separation of Concerns* principle, changes to the *Crisis Center* won't affect the
`AppModule` or any other feature's component.

{@a crisis-child-routes}

This section shows you how to organize the crisis center to conform to the following recommended pattern for
Angular applications:

Each feature area resides in its own folder.
Each feature has its own Angular feature module.
Each area has its own area root component.
Each area root component has its own router outlet and child routes.
Feature area routes rarely (if ever) cross with routes of other features.

If your app had many feature areas, the app component trees might look like this:

Milestone 4: Crisis center feature

A crisis center with child routes

{@a child-routing-component}

Add the following crisis-center.component.ts to the crisis-center folder:

The CrisisCenterComponent has the following in common with the AppComponent :

It is the root of the crisis center area, just as AppComponent is the root of the entire application.
It is a shell for the crisis management feature area, just as the AppComponent is a shell to manage the
high-level workflow.

Like most shells, the CrisisCenterComponent class is very simple, simpler even than
AppComponent : it has no business logic, and its template has no links, just a title and
<router-outlet> for the crisis center child views.

Unlike AppComponent , and most other components, it lacks a selector. It doesn't need one since you don't
embed this component in a parent template, instead you use the router to navigate to it.

{@a child-route-config}

As a host page for the "Crisis Center" feature, add the following crisis-center-home.component.ts to
the crisis-center folder.

Create a crisis-center-routing.module.ts file as you did the heroes-routing.module.ts

file. This time, you define child routes within the parent crisis-center route.

Child routing component

Child route configuration

Notice that the parent crisis-center route has a children property with a single route containing the
CrisisListComponent . The CrisisListComponent route also has a children array with two

routes.

These two routes navigate to the crisis center child components, CrisisCenterHomeComponent and
CrisisDetailComponent , respectively.

There are important differences in the way the router treats these child routes.

The router displays the components of these routes in the RouterOutlet of the
CrisisCenterComponent , not in the RouterOutlet of the AppComponent shell.

The CrisisListComponent contains the crisis list and a RouterOutlet to display the
Crisis Center Home and Crisis Detail route components.

The Crisis Detail route is a child of the Crisis List . Since the router reuses components by
default, the Crisis Detail component will be re-used as you select different crises. In contrast, back in
the Hero Detail route, the component was recreated each time you selected a different hero.

At the top level, paths that begin with / refer to the root of the application. But child routes extend the path of
the parent route. With each step down the route tree, you add a slash followed by the route path, unless the
path is empty.

Apply that logic to navigation within the crisis center for which the parent path is /crisis-center .

To navigate to the CrisisCenterHomeComponent , the full URL is /crisis-center

(/crisis-center + '' + '').

To navigate to the CrisisDetailComponent for a crisis with id=2 , the full URL is
/crisis-center/2 (/crisis-center + '' + '/2').

The absolute URL for the latter example, including the localhost origin, is

localhost:3000/crisis-center/2

Here's the complete crisis-center-routing.module.ts file with its imports.

{@a import-crisis-module}

As with the HeroesModule , you must add the CrisisCenterModule to the imports array of the
AppModule before the AppRoutingModule :

Import crisis center module into the AppModule routes

Remove the initial crisis center route from the app-routing.module.ts . The feature routes are now
provided by the HeroesModule and the CrisisCenter modules.

The app-routing.module.ts file retains the top-level application routes such as the default and wildcard
routes.

{@a relative-navigation}

While building out the crisis center feature, you navigated to the crisis detail route using an absolute path that
begins with a slash.

The router matches such absolute paths to routes starting from the top of the route configuration.

You could continue to use absolute paths like this to navigate inside the Crisis Center feature, but that pins the
links to the parent routing structure. If you changed the parent /crisis-center path, you would have to
change the link parameters array.

You can free the links from this dependency by defining paths that are relative to the current URL segment.
Navigation within the feature area remains intact even if you change the parent route path to the feature.

Here's an example:

The router supports directory-like syntax in a _link parameters list_ to help guide route name lookup: `./` or `no
leading slash` is relative to the current level. `../` to go up one level in the route path. You can combine relative
navigation syntax with an ancestor path. If you must navigate to a sibling route, you could use the `../`
convention to go up one level, then over and down the sibling route path.

To navigate a relative path with the Router.navigate method, you must supply the ActivatedRoute

to give the router knowledge of where you are in the current route tree.

After the link parameters array, add an object with a relativeTo property set to the ActivatedRoute .
The router then calculates the target URL based on the active route's location.

Always specify the complete _absolute_ path when calling router's `navigateByUrl` method.

{@a nav-to-crisis}

You've already injected the ActivatedRoute that you need to compose the relative navigation path.

Relative navigation

Navigate to crisis list with a relative URL

When using a RouterLink to navigate instead of the Router service, you'd use the same link
parameters array, but you wouldn't provide the object with the relativeTo property. The
ActivatedRoute is implicit in a RouterLink directive.

Update the gotoCrises method of the CrisisDetailComponent to navigate back to the Crisis Center
list using relative path navigation.

Notice that the path goes up a level using the ../ syntax. If the current crisis id is 3 , the resulting path
back to the crisis list is /crisis-center/;id=3;foo=foo .

{@a named-outlets}

You decide to give users a way to contact the crisis center. When a user clicks a "Contact" button, you want to
display a message in a popup view.

The popup should stay open, even when switching between pages in the application, until the user closes it by
sending the message or canceling. Clearly you can't put the popup in the same outlet as the other pages.

Until now, you've defined a single outlet and you've nested child routes under that outlet to group routes
together. The router only supports one primary unnamed outlet per template.

A template can also have any number of named outlets. Each named outlet has its own set of routes with their
own components. Multiple outlets can be displaying different content, determined by different routes, all at the
same time.

Add an outlet named "popup" in the AppComponent , directly below the unnamed outlet.

That's where a popup will go, once you learn how to route a popup component to it.

{@a secondary-routes}

Named outlets are the targets of secondary routes.

Secondary routes look like primary routes and you configure them the same way. They differ in a few key
respects.

They are independent of each other.
They work in combination with other routes.
They are displayed in named outlets.

Displaying multiple routes in named outlets

Secondary routes

Create a new component named ComposeMessageComponent in
src/app/compose-message.component.ts . It displays a simple form with a header, an input box for

the message, and two buttons, "Send" and "Cancel".

Here's the component and its template:

It looks about the same as any other component you've seen in this guide. There are two noteworthy
differences.

Note that the send() method simulates latency by waiting a second before "sending" the message and
closing the popup.

The closePopup() method closes the popup view by navigating to the popup outlet with a null . That's
a peculiarity covered below.

As with other application components, you add the ComposeMessageComponent to the declarations

of an NgModule . Do so in the AppModule .

{@a add-secondary-route}

Open the AppRoutingModule and add a new compose route to the appRoutes .

The path and component properties should be familiar. There's a new property, outlet , set to
'popup' . This route now targets the popup outlet and the ComposeMessageComponent will display

there.

The user needs a way to open the popup. Open the AppComponent and add a "Contact" link.

Add a secondary route

Although the compose route is pinned to the "popup" outlet, that's not sufficient for wiring the route to a
RouterLink directive. You have to specify the named outlet in a link parameters array and bind it to the
RouterLink with a property binding.

The link parameters array contains an object with a single outlets property whose value is another object
keyed by one (or more) outlet names. In this case there is only the "popup" outlet property and its value is
another link parameters array that specifies the compose route.

You are in effect saying, when the user clicks this link, display the component associated with the compose
route in the popup outlet.

This `outlets` object within an outer object was completely unnecessary when there was only one route and
one _unnamed_ outlet to think about. The router assumed that your route specification targeted the
unnamed primary outlet and created these objects for you. Routing to a named outlet has revealed a
previously hidden router truth: you can target multiple outlets with multiple routes in the same `RouterLink`
directive. You're not actually doing that here. But to target a named outlet, you must use the richer, more
verbose syntax.

{@a secondary-route-navigation}

Navigate to the Crisis Center and click "Contact". you should see something like the following URL in the
browser address bar.

http://.../crisis-center(popup:compose)

The interesting part of the URL follows the ... :

The crisis-center is the primary navigation.
Parentheses surround the secondary route.
The secondary route consists of an outlet name (popup), a colon separator, and the secondary
route path (compose).

Click the Heroes link and look at the URL again.

http://.../heroes(popup:compose)

The primary navigation part has changed; the secondary route is the same.

The router is keeping track of two separate branches in a navigation tree and generating a representation of
that tree in the URL.

Secondary route navigation: merging routes during navigation

You can add many more outlets and routes, at the top level and in nested levels, creating a navigation tree with
many branches. The router will generate the URL to go with it.

You can tell the router to navigate an entire tree at once by filling out the outlets object mentioned above.
Then pass that object inside a link parameters array to the router.navigate method.

Experiment with these possibilities at your leisure.

{@a clear-secondary-routes}

As you've learned, a component in an outlet persists until you navigate away to a new component. Secondary
outlets are no different in this regard.

Each secondary outlet has its own navigation, independent of the navigation driving the primary outlet.
Changing a current route that displays in the primary outlet has no effect on the popup outlet. That's why the
popup stays visible as you navigate among the crises and heroes.

Clicking the "send" or "cancel" buttons does clear the popup view. To see how, look at the closePopup()

method again:

It navigates imperatively with the Router.navigate() method, passing in a link parameters array.

Like the array bound to the Contact RouterLink in the AppComponent , this one includes an object with
an outlets property. The outlets property value is another object with outlet names for keys. The only
named outlet is 'popup' .

This time, the value of 'popup' is null . That's not a route, but it is a legitimate value. Setting the popup
RouterOutlet to null clears the outlet and removes the secondary popup route from the current URL.

{@a guards}

At the moment, any user can navigate anywhere in the application anytime. That's not always the right thing to
do.

Perhaps the user is not authorized to navigate to the target component.
Maybe the user must login (authenticate) first.
Maybe you should fetch some data before you display the target component.
You might want to save pending changes before leaving a component.

Clearing secondary routes

Milestone 5: Route guards

You might ask the user if it's OK to discard pending changes rather than save them.

You can add guards to the route configuration to handle these scenarios.

A guard's return value controls the router's behavior:

If it returns true , the navigation process continues.
If it returns false , the navigation process stops and the user stays put.

The guard can also tell the router to navigate elsewhere, effectively canceling the current navigation.

The guard might return its boolean answer synchronously. But in many cases, the guard can't produce an
answer synchronously. The guard could ask the user a question, save changes to the server, or fetch fresh
data. These are all asynchronous operations.

Accordingly, a routing guard can return an Observable<boolean> or a Promise<boolean> and the
router will wait for the observable to resolve to true or false .

The router supports multiple guard interfaces:

CanActivate to mediate navigation to a route.

CanActivateChild to mediate navigation to a child route.

CanDeactivate to mediate navigation away from the current route.

Resolve to perform route data retrieval before route activation.

CanLoad to mediate navigation to a feature module loaded asynchronously.

You can have multiple guards at every level of a routing hierarchy. The router checks the CanDeactivate

and CanActivateChild guards first, from the deepest child route to the top. Then it checks the
CanActivate guards from the top down to the deepest child route. If the feature module is loaded

asynchronously, the CanLoad guard is checked before the module is loaded. If any guard returns false,
pending guards that have not completed will be canceled, and the entire navigation is canceled.

There are several examples over the next few sections.

{@a can-activate-guard}

Applications often restrict access to a feature area based on who the user is. You could permit access only to
authenticated users or to users with a specific role. You might block or limit access until the user's account is

CanActivate: requiring authentication

activated.

The CanActivate guard is the tool to manage these navigation business rules.

In this next section, you'll extend the crisis center with some new administrative features. Those features aren't
defined yet. But you can start by adding a new feature module named AdminModule .

Create an admin folder with a feature module file, a routing configuration file, and supporting components.

The admin feature file structure looks like this:

src/app/admin
admin-dashboard.component.ts
admin.component.ts
admin.module.ts
admin-routing.module.ts
manage-crises.component.ts
manage-heroes.component.ts

The admin feature module contains the AdminComponent used for routing within the feature module, a
dashboard route and two unfinished components to manage crises and heroes.

Since the admin dashboard `RouterLink` is an empty path route in the `AdminComponent`, it is considered a
match to any route within the admin feature area. You only want the `Dashboard` link to be active when the
user visits that route. Adding an additional binding to the `Dashboard` routerLink, `[routerLinkActiveOptions]="{
exact: true }"`, marks the `./` link as active when the user navigates to the `/admin` URL and not when
navigating to any of the child routes.

The initial admin routing configuration:

{@a component-less-route}

Looking at the child route under the AdminComponent , there is a path and a children property but
it's not using a component . You haven't made a mistake in the configuration. You've defined a component-
less route.

The goal is to group the Crisis Center management routes under the admin path. You don't need a
component to do it. A component-less route makes it easier to guard child routes.

Add an admin feature module

Component-less route: grouping routes without a component

Next, import the AdminModule into app.module.ts and add it to the imports array to register the
admin routes.

Add an "Admin" link to the AppComponent shell so that users can get to this feature.

{@a guard-admin-feature}

Currently every route within the Crisis Center is open to everyone. The new admin feature should be
accessible only to authenticated users.

You could hide the link until the user logs in. But that's tricky and difficult to maintain.

Instead you'll write a canActivate() guard method to redirect anonymous users to the login page when
they try to enter the admin area.

This is a general purpose guard—you can imagine other features that require authenticated users—so you
create an auth-guard.service.ts in the application root folder.

At the moment you're interested in seeing how guards work so the first version does nothing useful. It simply
logs to console and returns true immediately, allowing navigation to proceed:

Next, open admin-routing.module.ts , import the AuthGuard class, and update the admin route
with a canActivate guard property that references it:

The admin feature is now protected by the guard, albeit protected poorly.

{@a teach-auth}

Make the AuthGuard at least pretend to authenticate.

The AuthGuard should call an application service that can login a user and retain information about the
current user. Here's a demo AuthService :

Although it doesn't actually log in, it has what you need for this discussion. It has an isLoggedIn flag to tell
you whether the user is authenticated. Its login method simulates an API call to an external service by
returning an Observable that resolves successfully after a short pause. The redirectUrl property will
store the attempted URL so you can navigate to it after authenticating.

Revise the AuthGuard to call it.

Guard the admin feature

Teach AuthGuard to authenticate

Notice that you inject the AuthService and the Router in the constructor. You haven't provided the
AuthService yet but it's good to know that you can inject helpful services into routing guards.

This guard returns a synchronous boolean result. If the user is logged in, it returns true and the navigation
continues.

The ActivatedRouteSnapshot contains the future route that will be activated and the
RouterStateSnapshot contains the future RouterState of the application, should you pass through

the guard check.

If the user is not logged in, you store the attempted URL the user came from using the
RouterStateSnapshot.url and tell the router to navigate to a login page—a page you haven't created

yet. This secondary navigation automatically cancels the current navigation; checkLogin() returns
false just to be clear about that.

{@a add-login-component}

You need a LoginComponent for the user to log in to the app. After logging in, you'll redirect to the stored
URL if available, or use the default URL. There is nothing new about this component or the way you wire it into
the router configuration.

Register a /login route in the login-routing.module.ts and add the necessary providers to the
providers array. In app.module.ts , import the LoginComponent and add it to the AppModule

declarations . Import and add the LoginRoutingModule to the AppModule imports as well.

Guards and the service providers they require _must_ be provided at the module-level. This allows the Router
access to retrieve these services from the `Injector` during the navigation process. The same rule applies for
feature modules loaded [asynchronously](#asynchronous-routing).

{@a can-activate-child-guard}

You can also protect child routes with the CanActivateChild guard. The CanActivateChild guard is
similar to the CanActivate guard. The key difference is that it runs before any child route is activated.

You protected the admin feature module from unauthorized access. You should also protect child routes within
the feature module.

Extend the AuthGuard to protect when navigating between the admin routes. Open

Add the LoginComponent

CanActivateChild: guarding child routes

auth-guard.service.ts and add the CanActivateChild interface to the imported tokens from the
router package.

Next, implement the canActivateChild() method which takes the same arguments as the
canActivate() method: an ActivatedRouteSnapshot and RouterStateSnapshot . The
canActivateChild() method can return an Observable<boolean> or Promise<boolean> for

async checks and a boolean for sync checks. This one returns a boolean :

Add the same AuthGuard to the component-less admin route to protect all other child routes at one
time instead of adding the AuthGuard to each route individually.

{@a can-deactivate-guard}

Back in the "Heroes" workflow, the app accepts every change to a hero immediately without hesitation or
validation.

In the real world, you might have to accumulate the users changes. You might have to validate across fields.
You might have to validate on the server. You might have to hold changes in a pending state until the user
confirms them as a group or cancels and reverts all changes.

What do you do about unapproved, unsaved changes when the user navigates away? You can't just leave and
risk losing the user's changes; that would be a terrible experience.

It's better to pause and let the user decide what to do. If the user cancels, you'll stay put and allow more
changes. If the user approves, the app can save.

You still might delay navigation until the save succeeds. If you let the user move to the next screen immediately
and the save were to fail (perhaps the data are ruled invalid), you would lose the context of the error.

You can't block while waiting for the server—that's not possible in a browser. You need to stop the navigation
while you wait, asynchronously, for the server to return with its answer.

You need the CanDeactivate guard.

{@a cancel-save}

The sample application doesn't talk to a server. Fortunately, you have another way to demonstrate an
asynchronous router hook.

CanDeactivate: handling unsaved changes

Cancel and save

Users update crisis information in the CrisisDetailComponent . Unlike the HeroDetailComponent ,
the user changes do not update the crisis entity immediately. Instead, the app updates the entity when the user
presses the Save button and discards the changes when the user presses the Cancel button.

Both buttons navigate back to the crisis list after save or cancel.

What if the user tries to navigate away without saving or canceling? The user could push the browser back
button or click the heroes link. Both actions trigger a navigation. Should the app save or cancel automatically?

This demo does neither. Instead, it asks the user to make that choice explicitly in a confirmation dialog box that
waits asynchronously for the user's answer.

You could wait for the user's answer with synchronous, blocking code. The app will be more responsive—and
can do other work—by waiting for the user's answer asynchronously. Waiting for the user asynchronously is
like waiting for the server asynchronously.

The DialogService , provided in the AppModule for app-wide use, does the asking.

It returns an Observable that resolves when the user eventually decides what to do: either to discard
changes and navigate away (true) or to preserve the pending changes and stay in the crisis editor
(false).

{@a CanDeactivate}

Create a guard that checks for the presence of a canDeactivate() method in a component—any
component. The CrisisDetailComponent will have this method. But the guard doesn't have to know
that. The guard shouldn't know the details of any component's deactivation method. It need only detect that the
component has a canDeactivate() method and call it. This approach makes the guard reusable.

Alternatively, you could make a component-specific CanDeactivate guard for the
CrisisDetailComponent . The canDeactivate() method provides you with the current instance of

the component , the current ActivatedRoute , and RouterStateSnapshot in case you needed to
access some external information. This would be useful if you only wanted to use this guard for this component
and needed to get the component's properties or confirm whether the router should allow navigation away from
it.

Looking back at the CrisisDetailComponent , it implements the confirmation workflow for unsaved
changes.

Notice that the canDeactivate() method can return synchronously; it returns true immediately if there
is no crisis or there are no pending changes. But it can also return a Promise or an Observable and the
router will wait for that to resolve to truthy (navigate) or falsy (stay put).

Add the Guard to the crisis detail route in crisis-center-routing.module.ts using the
canDeactivate array property.

Add the Guard to the main AppRoutingModule providers array so the Router can inject it
during the navigation process.

Now you have given the user a safeguard against unsaved changes. {@a Resolve}

{@a resolve-guard}

In the Hero Detail and Crisis Detail , the app waited until the route was activated to fetch the
respective hero or crisis.

This worked well, but there's a better way. If you were using a real world API, there might be some delay before
the data to display is returned from the server. You don't want to display a blank component while waiting for
the data.

It's preferable to pre-fetch data from the server so it's ready the moment the route is activated. This also allows
you to handle errors before routing to the component. There's no point in navigating to a crisis detail for an
id that doesn't have a record. It'd be better to send the user back to the Crisis List that shows only

valid crisis centers.

In summary, you want to delay rendering the routed component until all necessary data have been fetched.

You need a resolver.

{@a fetch-before-navigating}

At the moment, the CrisisDetailComponent retrieves the selected crisis. If the crisis is not found, it
navigates back to the crisis list view.

The experience might be better if all of this were handled first, before the route is activated. A
CrisisDetailResolver service could retrieve a Crisis or navigate away if the Crisis does not

exist before activating the route and creating the CrisisDetailComponent .

Create the crisis-detail-resolver.service.ts file within the Crisis Center feature area.

Take the relevant parts of the crisis retrieval logic in CrisisDetailComponent.ngOnInit and move
them into the CrisisDetailResolver . Import the Crisis model, CrisisService , and the

Resolve: pre-fetching component data

Fetch data before navigating

Router so you can navigate elsewhere if you can't fetch the crisis.

Be explicit. Implement the Resolve interface with a type of Crisis .

Inject the CrisisService and Router and implement the resolve() method. That method could
return a Promise , an Observable , or a synchronous return value.

The CrisisService.getCrisis method returns an Observable. Return that observable to prevent the
route from loading until the data is fetched. The Router guards require an Observable to complete ,
meaning it has emitted all of its values. You use the take operator with an argument of 1 to ensure that
the Observable completes after retrieving the first value from the Observable returned by the getCrisis

method. If it doesn't return a valid Crisis , navigate the user back to the CrisisListComponent ,
canceling the previous in-flight navigation to the CrisisDetailComponent .

Import this resolver in the crisis-center-routing.module.ts and add a resolve object to the
CrisisDetailComponent route configuration.

Remember to add the CrisisDetailResolver service to the CrisisCenterRoutingModule 's
providers array.

The CrisisDetailComponent should no longer fetch the crisis. Update the
CrisisDetailComponent to get the crisis from the ActivatedRoute.data.crisis property

instead; that's where you said it should be when you re-configured the route. It will be there when the
CrisisDetailComponent ask for it.

Three critical points

1. The router's Resolve interface is optional. The CrisisDetailResolver doesn't inherit from a
base class. The router looks for that method and calls it if found.

2. Rely on the router to call the resolver. Don't worry about all the ways that the user could navigate away.
That's the router's job. Write this class and let the router take it from there.

3. The Observable provided to the Router must complete. If the Observable does not complete, the
navigation will not continue.

The relevant Crisis Center code for this milestone follows.

{@a query-parameters}

{@a fragment}

Query parameters and fragments

In the route parameters example, you only dealt with parameters specific to the route, but what if you wanted
optional parameters available to all routes? This is where query parameters come into play.

Fragments refer to certain elements on the page identified with an id attribute.

Update the AuthGuard to provide a session_id query that will remain after navigating to another route.

Add an anchor element so you can jump to a certain point on the page.

Add the NavigationExtras object to the router.navigate method that navigates you to the
/login route.

You can also preserve query parameters and fragments across navigations without having to provide them
again when navigating. In the LoginComponent , you'll add an object as the second argument in the
router.navigate function and provide the queryParamsHandling and preserveFragment to

pass along the current query parameters and fragment to the next route.

The `queryParamsHandling` feature also provides a `merge` option, which will preserve and combine the
current query parameters with any provided query parameters when navigating.

Since you'll be navigating to the Admin Dashboard route after logging in, you'll update it to handle the query
parameters and fragment.

Query parameters and fragments are also available through the ActivatedRoute service. Just like route
parameters, the query parameters and fragments are provided as an Observable . The updated Crisis
Admin component feeds the Observable directly into the template using the AsyncPipe .

Now, you can click on the Admin button, which takes you to the Login page with the provided
queryParamMap and fragment . After you click the login button, notice that you have been redirected to

the Admin Dashboard page with the query parameters and fragment still intact in the address bar.

You can use these persistent bits of information for things that need to be provided across pages like
authentication tokens or session ids.

The `query params` and `fragment` can also be preserved using a `RouterLink` with the
`queryParamsHandling` and `preserveFragment` bindings respectively.

{@a asynchronous-routing}

As you've worked through the milestones, the application has naturally gotten larger. As you continue to build

Milestone 6: Asynchronous routing

out feature areas, the overall application size will continue to grow. At some point you'll reach a tipping point
where the application takes long time to load.

How do you combat this problem? With asynchronous routing, which loads feature modules lazily, on request.
Lazy loading has multiple benefits.

You can load feature areas only when requested by the user.
You can speed up load time for users that only visit certain areas of the application.
You can continue expanding lazy loaded feature areas without increasing the size of the initial load
bundle.

You're already made part way there. By organizing the application into modules— AppModule ,
HeroesModule , AdminModule and CrisisCenterModule —you have natural candidates for lazy

loading.

Some modules, like AppModule , must be loaded from the start. But others can and should be lazy loaded.
The AdminModule , for example, is needed by a few authorized users, so you should only load it when
requested by the right people.

{@a lazy-loading-route-config}

Change the admin path in the admin-routing.module.ts from 'admin' to an empty string,
'' , the empty path.

The Router supports empty path routes; use them to group routes together without adding any additional
path segments to the URL. Users will still visit /admin and the AdminComponent still serves as the
Routing Component containing child routes.

Open the AppRoutingModule and add a new admin route to its appRoutes array.

Give it a loadChildren property (not a children property!), set to the address of the
AdminModule . The address is the AdminModule file location (relative to the app root), followed by a #

separator, followed by the name of the exported module class, AdminModule .

When the router navigates to this route, it uses the loadChildren string to dynamically load the
AdminModule . Then it adds the AdminModule routes to its current route configuration. Finally, it loads

the requested route to the destination admin component.

The lazy loading and re-configuration happen just once, when the route is first requested; the module and
routes are available immediately for subsequent requests.

Lazy Loading route configuration

Angular provides a built-in module loader that supports SystemJS to load modules asynchronously. If you were
using another bundling tool, such as Webpack, you would use the Webpack mechanism for asynchronously
loading modules.

Take the final step and detach the admin feature set from the main application. The root AppModule must
neither load nor reference the AdminModule or its files.

In app.module.ts , remove the AdminModule import statement from the top of the file and remove the
AdminModule from the NgModule's imports array.

{@a can-load-guard}

You're already protecting the AdminModule with a CanActivate guard that prevents unauthorized
users from accessing the admin feature area. It redirects to the login page if the user is not authorized.

But the router is still loading the AdminModule even if the user can't visit any of its components. Ideally,
you'd only load the AdminModule if the user is logged in.

Add a CanLoad guard that only loads the AdminModule once the user is logged in and attempts to
access the admin feature area.

The existing AuthGuard already has the essential logic in its checkLogin() method to support the
CanLoad guard.

Open auth-guard.service.ts . Import the CanLoad interface from @angular/router . Add it to
the AuthGuard class's implements list. Then implement canLoad() as follows:

The router sets the canLoad() method's route parameter to the intended destination URL. The
checkLogin() method redirects to that URL once the user has logged in.

Now import the AuthGuard into the AppRoutingModule and add the AuthGuard to the canLoad

array property for the admin route. The completed admin route looks like this:

{@a preloading}

You've learned how to load modules on-demand. You can also load modules asynchronously with preloading.

This may seem like what the app has been doing all along. Not quite. The AppModule is loaded when the
application starts; that's eager loading. Now the AdminModule loads only when the user clicks on a link;

CanLoad Guard: guarding unauthorized loading of feature modules

Preloading: background loading of feature areas

that's lazy loading.

Preloading is something in between. Consider the Crisis Center. It isn't the first view that a user sees. By
default, the Heroes are the first view. For the smallest initial payload and fastest launch time, you should
eagerly load the AppModule and the HeroesModule .

You could lazy load the Crisis Center. But you're almost certain that the user will visit the Crisis Center within
minutes of launching the app. Ideally, the app would launch with just the AppModule and the
HeroesModule loaded and then, almost immediately, load the CrisisCenterModule in the

background. By the time the user navigates to the Crisis Center, its module will have been loaded and ready to
go.

That's preloading.

{@a how-preloading}

After each successful navigation, the router looks in its configuration for an unloaded module that it can
preload. Whether it preloads a module, and which modules it preloads, depends upon the preload strategy.

The Router offers two preloading strategies out of the box:

No preloading at all which is the default. Lazy loaded feature areas are still loaded on demand.
Preloading of all lazy loaded feature areas.

Out of the box, the router either never preloads, or preloads every lazy load module. The Router also
supports custom preloading strategies for fine control over which modules to preload and when.

In this next section, you'll update the CrisisCenterModule to load lazily by default and use the
PreloadAllModules strategy to load it (and all other lazy loaded modules) as soon as possible.

{@a lazy-load-crisis-center}

Update the route configuration to lazy load the CrisisCenterModule . Take the same steps you used to
configure AdminModule for lazy load.

1. Change the crisis-center path in the CrisisCenterRoutingModule to an empty string.

2. Add a crisis-center route to the AppRoutingModule .

How preloading works

Lazy load the crisis center

3. Set the loadChildren string to load the CrisisCenterModule .

4. Remove all mention of the CrisisCenterModule from app.module.ts .

Here are the updated modules before enabling preload:

You could try this now and confirm that the CrisisCenterModule loads after you click the "Crisis Center"
button.

To enable preloading of all lazy loaded modules, import the PreloadAllModules token from the Angular
router package.

The second argument in the RouterModule.forRoot method takes an object for additional configuration
options. The preloadingStrategy is one of those options. Add the PreloadAllModules token to the
forRoot call:

This tells the Router preloader to immediately load all lazy loaded routes (routes with a loadChildren

property).

When you visit http://localhost:3000 , the /heroes route loads immediately upon launch and the
router starts loading the CrisisCenterModule right after the HeroesModule loads.

Surprisingly, the AdminModule does not preload. Something is blocking it.

{@a preload-canload}

The PreloadAllModules strategy does not load feature areas protected by a CanLoad guard. This is by
design.

You added a CanLoad guard to the route in the AdminModule a few steps back to block loading of that
module until the user is authorized. That CanLoad guard takes precedence over the preload strategy.

If you want to preload a module and guard against unauthorized access, drop the canLoad() guard method
and rely on the canActivate() guard alone.

{@a custom-preloading}

Preloading every lazy loaded modules works well in many situations, but it isn't always the right choice,
especially on mobile devices and over low bandwidth connections. You may choose to preload only certain

CanLoad blocks preload

Custom Preloading Strategy

feature modules, based on user metrics and other business and technical factors.

You can control what and how the router preloads with a custom preloading strategy.

In this section, you'll add a custom strategy that only preloads routes whose data.preload flag is set to
true . Recall that you can add anything to the data property of a route.

Set the data.preload flag in the crisis-center route in the AppRoutingModule .

Add a new file to the project called selective-preloading-strategy.ts and define a
SelectivePreloadingStrategy service class as follows:

SelectivePreloadingStrategy implements the PreloadingStrategy , which has one method,
preload .

The router calls the preload method with two arguments:

1. The route to consider.
2. A loader function that can load the routed module asynchronously.

An implementation of preload must return an Observable . If the route should preload, it returns the
observable returned by calling the loader function. If the route should not preload, it returns an Observable

of null .

In this sample, the preload method loads the route if the route's data.preload flag is truthy.

It also has a side-effect. SelectivePreloadingStrategy logs the path of a selected route in its
public preloadedModules array.

Shortly, you'll extend the AdminDashboardComponent to inject this service and display its
preloadedModules array.

But first, make a few changes to the AppRoutingModule .

1. Import SelectivePreloadingStrategy into AppRoutingModule .
2. Replace the PreloadAllModules strategy in the call to forRoot with this

SelectivePreloadingStrategy .
3. Add the SelectivePreloadingStrategy strategy to the AppRoutingModule providers array so

it can be injected elsewhere in the app.

Now edit the AdminDashboardComponent to display the log of preloaded routes.

1. Import the SelectivePreloadingStrategy (it's a service).
2. Inject it into the dashboard's constructor.

3. Update the template to display the strategy service's preloadedModules array.

When you're done it looks like this.

Once the application loads the initial route, the CrisisCenterModule is preloaded. Verify this by logging
in to the Admin feature area and noting that the crisis-center is listed in the
Preloaded Modules . It's also logged to the browser's console.

{@a redirect-advanced}

You've setup the routes for navigating around your application. You've used navigation imperatively and
declaratively to many different routes. But like any application, requirements change over time. You've setup
links and navigation to /heroes and /hero/:id from the HeroListComponent and
HeroDetailComponent components. If there was a requirement that links to heroes become
superheroes , you still want the previous URLs to navigate correctly. You also don't want to go and update

every link in your application, so redirects makes refactoring routes trivial.

{@a url-refactor}

Let's take the Hero routes and migrate them to new URLs. The Router checks for redirects in your
configuration before navigating, so each redirect is triggered when needed. To support this change, you'll add
redirects from the old routes to the new routes in the heroes-routing.module .

You'll notice two different types of redirects. The first change is from /heroes to /superheroes without
any parameters. This is a straightforward redirect, unlike the change from /hero/:id to
/superhero/:id , which includes the :id route parameter. Router redirects also use powerful pattern

matching, so the Router inspects the URL and replaces route parameters in the path with their
appropriate destination. Previously, you navigated to a URL such as /hero/15 with a route parameter id

of 15 .

The `Router` also supports [query parameters](#query-parameters) and the [fragment](#fragment) when using
redirects. * When using absolute redirects, the `Router` will use the query parameters and the fragment from
the redirectTo in the route config. * When using relative redirects, the `Router` use the query params and the
fragment from the source URL.

Before updating the app-routing.module.ts , you'll need to consider an important rule. Currently, our
empty path route redirects to /heroes , which redirects to /superheroes . This won't work and is by

Migrating URLs with Redirects

Changing /heroes to /superheroes

design as the Router handles redirects once at each level of routing configuration. This prevents chaining
of redirects, which can lead to endless redirect loops.

So instead, you'll update the empty path route in app-routing.module.ts to redirect to
/superheroes .

Since RouterLink s aren't tied to route configuration, you'll need to update the associated router links so
they remain active when the new route is active. You'll update the app.component.ts template for the
/heroes routerLink.

With the redirects setup, all previous routes now point to their new destinations and both URLs still function as
intended.

{@a inspect-config}

You put a lot of effort into configuring the router in several routing module files and were careful to list them in
the proper order. Are routes actually evaluated as you planned? How is the router really configured?

You can inspect the router's current configuration any time by injecting it and examining its config property.
For example, update the AppModule as follows and look in the browser console window to see the finished
route configuration.

{@a final-app}

You've covered a lot of ground in this guide and the application is too big to reprint here. Please visit the where
you can download the final source code.

{@a appendices}

The balance of this guide is a set of appendices that elaborate some of the points you covered quickly above.

The appendix material isn't essential. Continued reading is for the curious.

{@a link-parameters-array}

Inspect the router's configuration

Wrap up and final app

Appendices

A link parameters array holds the following ingredients for router navigation:

The path of the route to the destination component.
Required and optional route parameters that go into the route URL.

You can bind the RouterLink directive to such an array like this:

You've written a two element array when specifying a route parameter like this:

You can provide optional route parameters in an object like this:

These three examples cover the need for an app with one level routing. The moment you add a child router,
such as the crisis center, you create new link array possibilities.

Recall that you specified a default child route for the crisis center so this simple RouterLink is fine.

Parse it out.

The first item in the array identifies the parent route (/crisis-center).
There are no parameters for this parent route so you're done with it.
There is no default for the child route so you need to pick one.
You're navigating to the CrisisListComponent , whose route path is / , but you don't need to
explicitly add the slash.
Voilà! ['/crisis-center'] .

Take it a step further. Consider the following router link that navigates from the root of the application down to
the Dragon Crisis:

The first item in the array identifies the parent route (/crisis-center).
There are no parameters for this parent route so you're done with it.
The second item identifies the child route details about a particular crisis (/:id).
The details child route requires an id route parameter.
You added the id of the Dragon Crisis as the second item in the array (1).
The resulting path is /crisis-center/1 .

If you wanted to, you could redefine the AppComponent template with Crisis Center routes exclusively:

In sum, you can write applications with one, two or more levels of routing. The link parameters array affords the
flexibility to represent any routing depth and any legal sequence of route paths, (required) router parameters,
and (optional) route parameter objects.

Appendix: link parameters array

{@a browser-url-styles}

{@a location-strategy}

When the router navigates to a new component view, it updates the browser's location and history with a URL
for that view. This is a strictly local URL. The browser shouldn't send this URL to the server and should not
reload the page.

Modern HTML5 browsers support history.pushState, a technique that changes a browser's location and history
without triggering a server page request. The router can compose a "natural" URL that is indistinguishable from
one that would otherwise require a page load.

Here's the Crisis Center URL in this "HTML5 pushState" style:

localhost:3002/crisis-center/

Older browsers send page requests to the server when the location URL changes unless the change occurs
after a "#" (called the "hash"). Routers can take advantage of this exception by composing in-application route
URLs with hashes. Here's a "hash URL" that routes to the Crisis Center.

localhost:3002/src/#/crisis-center/

The router supports both styles with two LocationStrategy providers:

1. PathLocationStrategy —the default "HTML5 pushState" style.
2. HashLocationStrategy —the "hash URL" style.

The RouterModule.forRoot function sets the LocationStrategy to the
PathLocationStrategy , making it the default strategy. You can switch to the
HashLocationStrategy with an override during the bootstrapping process if you prefer it.

Learn about providers and the bootstrap process in the [Dependency Injection guide](guide/dependency-
injection#bootstrap).

You must choose a strategy and you need to make the right call early in the project. It won't be easy to change
later once the application is in production and there are lots of application URL references in the wild.

Almost all Angular projects should use the default HTML5 style. It produces URLs that are easier for users to
understand. And it preserves the option to do server-side rendering later.

Appendix: LocationStrategy and browser URL styles

Which strategy is best?

Rendering critical pages on the server is a technique that can greatly improve perceived responsiveness when
the app first loads. An app that would otherwise take ten or more seconds to start could be rendered on the
server and delivered to the user's device in less than a second.

This option is only available if application URLs look like normal web URLs without hashes (#) in the middle.

Stick with the default unless you have a compelling reason to resort to hash routes.

While the router uses the HTML5 pushState style by default, you must configure that strategy with a base href.

The preferred way to configure the strategy is to add a <base href> element tag in the <head> of the
index.html .

Without that tag, the browser may not be able to load resources (images, CSS, scripts) when "deep linking"
into the app. Bad things could happen when someone pastes an application link into the browser's address bar
or clicks such a link in an email.

Some developers may not be able to add the <base> element, perhaps because they don't have access to
<head> or the index.html .

Those developers may still use HTML5 URLs by taking two remedial steps:

1. Provide the router with an appropriate [APPBASEHREF][] value.
2. Use root URLs for all web resources: CSS, images, scripts, and template HTML files.

{@a hashlocationstrategy}

You can go old-school with the HashLocationStrategy by providing the useHash: true in an object
as the second argument of the RouterModule.forRoot in the AppModule .

HTML5 URLs and the <base href>

HashLocationStrategy

This page describes Angular's built-in protections against common web-application vulnerabilities and attacks
such as cross-site scripting attacks. It doesn't cover application-level security, such as authentication (Who is
this user?) and authorization (What can this user do?).

For more information about the attacks and mitigations described below, see OWASP Guide Project.

You can run the in Plunker and download the code from there.

To report vulnerabilities in Angular itself, email us at security@angular.io.

For more information about how Google handles security issues, see Google's security philosophy.

Keep current with the latest Angular library releases. We regularly update the Angular libraries, and
these updates may fix security defects discovered in previous versions. Check the Angular change log for
security-related updates.

Don't modify your copy of Angular. Private, customized versions of Angular tend to fall behind the
current version and may not include important security fixes and enhancements. Instead, share your
Angular improvements with the community and make a pull request.

Avoid Angular APIs marked in the documentation as “Security Risk.” For more information, see the
Trusting safe values section of this page.

Cross-site scripting (XSS) enables attackers to inject malicious code into web pages. Such code can then, for
example, steal user data (in particular, login data) or perform actions to impersonate the user. This is one of the
most common attacks on the web.

To block XSS attacks, you must prevent malicious code from entering the DOM (Document Object Model). For
example, if attackers can trick you into inserting a <script> tag in the DOM, they can run arbitrary code on

Security

Reporting vulnerabilities

Best practices

Preventing cross-site scripting (XSS)

your website. The attack isn't limited to <script> tags—many elements and properties in the DOM allow
code execution, for example, and . If
attacker-controlled data enters the DOM, expect security vulnerabilities.

To systematically block XSS bugs, Angular treats all values as untrusted by default. When a value is inserted
into the DOM from a template, via property, attribute, style, class binding, or interpolation, Angular sanitizes
and escapes untrusted values.

Angular templates are the same as executable code: HTML, attributes, and binding expressions (but not the
values bound) in templates are trusted to be safe. This means that applications must prevent values that an
attacker can control from ever making it into the source code of a template. Never generate template source
code by concatenating user input and templates. To prevent these vulnerabilities, use the offline template
compiler, also known as template injection.

Sanitization is the inspection of an untrusted value, turning it into a value that's safe to insert into the DOM. In
many cases, sanitization doesn't change a value at all. Sanitization depends on context: a value that's
harmless in CSS is potentially dangerous in a URL.

Angular defines the following security contexts:

HTML is used when interpreting a value as HTML, for example, when binding to innerHtml .
Style is used when binding CSS into the style property.
URL is used for URL properties, such as <a href> .
Resource URL is a URL that will be loaded and executed as code, for example, in <script src> .

Angular sanitizes untrusted values for HTML, styles, and URLs; sanitizing resource URLs isn't possible
because they contain arbitrary code. In development mode, Angular prints a console warning when it has to
change a value during sanitization.

The following template binds the value of htmlSnippet , once by interpolating it into an element's content,
and once by binding it to the innerHTML property of an element:

Interpolated content is always escaped—the HTML isn't interpreted and the browser displays angle brackets in
the element's text content.

Angular’s cross-site scripting security model

Sanitization and security contexts

Sanitization example

For the HTML to be interpreted, bind it to an HTML property such as innerHTML . But binding a value that
an attacker might control into innerHTML normally causes an XSS vulnerability. For example, code
contained in a <script> tag is executed:

Angular recognizes the value as unsafe and automatically sanitizes it, which removes the <script> tag but
keeps safe content such as the text content of the <script> tag and the element.

The built-in browser DOM APIs don't automatically protect you from security vulnerabilities. For example,
document , the node available through ElementRef , and many third-party APIs contain unsafe methods.

Avoid directly interacting with the DOM and instead use Angular templates where possible.

Content Security Policy (CSP) is a defense-in-depth technique to prevent XSS. To enable CSP, configure your
web server to return an appropriate Content-Security-Policy HTTP header. Read more about content
security policy at An Introduction to Content Security Policy on the HTML5Rocks website.

{@a offline-template-compiler}

The offline template compiler prevents a whole class of vulnerabilities called template injection, and greatly
improves application performance. Use the offline template compiler in production deployments; don't
dynamically generate templates. Angular trusts template code, so generating templates, in particular templates
containing user data, circumvents Angular's built-in protections. For information about dynamically constructing
forms in a safe way, see the Dynamic Forms guide page.

HTML constructed on the server is vulnerable to injection attacks. Injecting template code into an Angular
application is the same as injecting executable code into the application: it gives the attacker full control over
the application. To prevent this, use a templating language that automatically escapes values to prevent XSS
vulnerabilities on the server. Don't generate Angular templates on the server side using a templating language;
doing this carries a high risk of introducing template-injection vulnerabilities.

Avoid direct use of the DOM APIs

Content security policy

Use the offline template compiler

Server-side XSS protection

Trusting safe values

Sometimes applications genuinely need to include executable code, display an <iframe> from some URL,
or construct potentially dangerous URLs. To prevent automatic sanitization in any of these situations, you can
tell Angular that you inspected a value, checked how it was generated, and made sure it will always be secure.
But be careful. If you trust a value that might be malicious, you are introducing a security vulnerability into your
application. If in doubt, find a professional security reviewer.

To mark a value as trusted, inject DomSanitizer and call one of the following methods:

bypassSecurityTrustHtml
bypassSecurityTrustScript
bypassSecurityTrustStyle
bypassSecurityTrustUrl
bypassSecurityTrustResourceUrl

Remember, whether a value is safe depends on context, so choose the right context for your intended use of
the value. Imagine that the following template needs to bind a URL to a javascript:alert(...) call:

Normally, Angular automatically sanitizes the URL, disables the dangerous code, and in development mode,
logs this action to the console. To prevent this, mark the URL value as a trusted URL using the
bypassSecurityTrustUrl call:

If you need to convert user input into a trusted value, use a controller method. The following template allows
users to enter a YouTube video ID and load the corresponding video in an <iframe> . The
<iframe src> attribute is a resource URL security context, because an untrusted source can, for example,

smuggle in file downloads that unsuspecting users could execute. So call a method on the controller to
construct a trusted video URL, which causes Angular to allow binding into <iframe src> :

Angular has built-in support to help prevent two common HTTP vulnerabilities, cross-site request forgery
(CSRF or XSRF) and cross-site script inclusion (XSSI). Both of these must be mitigated primarily on the server

HTTP-level vulnerabilities

side, but Angular provides helpers to make integration on the client side easier.

In a cross-site request forgery (CSRF or XSRF), an attacker tricks the user into visiting a different web page
(such as evil.com) with malignant code that secretly sends a malicious request to the application's web
server (such as example-bank.com).

Assume the user is logged into the application at example-bank.com . The user opens an email and clicks
a link to evil.com , which opens in a new tab.

The evil.com page immediately sends a malicious request to example-bank.com . Perhaps it's a
request to transfer money from the user's account to the attacker's account. The browser automatically sends
the example-bank.com cookies (including the authentication cookie) with this request.

If the example-bank.com server lacks XSRF protection, it can't tell the difference between a legitimate
request from the application and the forged request from evil.com .

To prevent this, the application must ensure that a user request originates from the real application, not from a
different site. The server and client must cooperate to thwart this attack.

In a common anti-XSRF technique, the application server sends a randomly generated authentication token in
a cookie. The client code reads the cookie and adds a custom request header with the token in all subsequent
requests. The server compares the received cookie value to the request header value and rejects the request if
the values are missing or don't match.

This technique is effective because all browsers implement the same origin policy. Only code from the website
on which cookies are set can read the cookies from that site and set custom headers on requests to that site.
That means only your application can read this cookie token and set the custom header. The malicious code on
evil.com can't.

Angular's HttpClient has built-in support for the client-side half of this technique. Read about it more in
the HttpClient guide.

For information about CSRF at the Open Web Application Security Project (OWASP), see Cross-Site Request
Forgery (CSRF) and Cross-Site Request Forgery (CSRF) Prevention Cheat Sheet. The Stanford University
paper Robust Defenses for Cross-Site Request Forgery is a rich source of detail.

See also Dave Smith's easy-to-understand talk on XSRF at AngularConnect 2016.

Cross-site request forgery

Cross-site script inclusion (XSSI)

Cross-site script inclusion, also known as JSON vulnerability, can allow an attacker's website to read data from
a JSON API. The attack works on older browsers by overriding native JavaScript object constructors, and then
including an API URL using a <script> tag.

This attack is only successful if the returned JSON is executable as JavaScript. Servers can prevent an attack
by prefixing all JSON responses to make them non-executable, by convention, using the well-known string
")]}',\n" .

Angular's HttpClient library recognizes this convention and automatically strips the string ")]}',\n"
from all responses before further parsing.

For more information, see the XSSI section of this Google web security blog post.

Angular applications must follow the same security principles as regular web applications, and must be audited
as such. Angular-specific APIs that should be audited in a security review, such as the bypassSecurityTrust
methods, are marked in the documentation as security sensitive.

Auditing Angular applications

Importing ServiceWorkerModule into your AppModule doesn't just register the service worker, it also
provides a few services you can use to interact with the service worker and control the caching of your app.

The SwUpdate service gives you access to events that indicate when the service worker has discovered an
available update for your app or when it has activated such an update—meaning it is now serving content from
that update to your app.

The SwUpdate service supports four separate operations: * Getting notified of available updates. These are
new versions of the app to be loaded if the page is refreshed. * Getting notified of update activation. This is
when the service worker starts serving a new version of the app immediately. * Asking the service worker to
check the server for new updates. * Asking the service worker to activate the latest version of the app for the
current tab.

The two update events, available and activated , are Observable properties of SwUpdate :

You can use these events to notify the user of a pending update or to refresh their pages when the code they
are running is out of date.

It's possible to ask the service worker to check if any updates have been deployed to the server. You might
choose to do this if you have a site that changes frequently or want updates to happen on a schedule.

Do this with the checkForUpdate() method:

This method returns a Promise which indicates that the update check has completed successfully, though it
does not indicate whether an update was discovered as a result of the check. Even if one is found, the service
worker must still successfully download the changed files, which can fail. If successful, the available
event will indicate availability of a new version of the app.

Communicating with service workers

SwUpdate service

Available and activated updates

Checking for updates

Forcing update activation

If the current tab needs to be updated to the latest app version immediately, it can ask to do so with the
activateUpdate() method:

Doing this could break lazy-loading into currently running apps, especially if the lazy-loaded chunks use
filenames with hashes, which change every version.

{@a glob}

The src/ngsw-config.json configuration file specifies which files and data URLs the Angular service
worker should cache and how it should update the cached files and data. The CLI processes the configuration
file during ng build --prod . Manually, you can process it with the ngsw-config tool:

ngsw-config dist src/ngswn-config.json /base/href

The configuration file uses the JSON format. All file paths must begin with / , which is the deployment
directory—usually dist in CLI projects.

Patterns use a limited glob format:

** matches 0 or more path segments.
* matches exactly one path segment or filename segment.

The ! prefix marks the pattern as being negative, meaning that only files that don't match the pattern
will be included.

Example patterns:

/**/*.html specifies all HTML files.
/*.html specifies only HTML files in the root.
!/**/*.map exclude all sourcemaps.

Each section of the configuration file is described below.

This section enables you to pass any data you want that describes this particular version of the app. The
SwUpdate service includes that data in the update notifications. Many apps use this section to provide

additional information for the display of UI popups, notifying users of the available update.

Specifies the file that serves as the index page to satisfy navigation requests. Usually this is /index.html .

Reference: Configuration file

appData

index

Assets are resources that are part of the app version that update along with the app. They can include
resources loaded from the page's origin as well as third-party resources loaded from CDNs and other external
URLs. As not all such external URLs may be known at build time, URL patterns can be matched.

This field contains an array of asset groups, each of which defines a set of asset resources and the policy by
which they are cached.

{
 "assetGroups": [{
 ...
 }, {
 ...
 }]
}

Each asset group specifies both a group of resources and a policy that governs them. This policy determines
when the resources are fetched and what happens when changes are detected.

Asset groups follow the Typescript interface shown here:

interface AssetGroup {
 name: string;
 installMode?: 'prefetch' | 'lazy';
 updateMode?: 'prefetch' | 'lazy';
 resources: {
 files?: string[];
 versionedFiles?: string[];
 urls?: string[];
 };
}

A name is mandatory. It identifies this particular group of assets between versions of the configuration.

The installMode determines how these resources are initially cached. The installMode can be
either of two values:

assetGroups

name

installMode

prefetch tells the Angular service worker to fetch every single listed resource while it's caching the
current version of the app. This is bandwidth-intensive but ensures resources are available whenever
they're requested, even if the browser is currently offline.

lazy does not cache any of the resources up front. Instead, the Angular service worker only caches
resources for which it receives requests. This is an on-demand caching mode. Resources that are never
requested will not be cached. This is useful for things like images at different resolutions, so the service
worker only caches the correct assets for the particular screen and orientation.

For resources already in the cache, the updateMode determines the caching behavior when a new version
of the app is discovered. Any resources in the group that have changed since the previous version are updated
in accordance with updateMode .

prefetch tells the service worker to download and cache the changed resources immediately.

lazy tells the service worker to not cache those resources. Instead, it treats them as unrequested and
waits until they're requested again before updating them. An updateMode of lazy is only valid if the
installMode is also lazy .

This section describes the resources to cache, broken up into three groups.

files lists patterns that match files in the distribution directory. These can be single files or glob-like
patterns that match a number of files.

versionedFiles is like files but should be used for build artifacts that already include a hash in
the filename, which is used for cache busting. The Angular service worker can optimize some aspects of
its operation if it can assume file contents are immutable.

urls includes both URLs and URL patterns that will be matched at runtime. These resources are not
fetched directly and do not have content hashes, but they will be cached according to their HTTP headers.
This is most useful for CDNs such as the Google Fonts service.

Unlike asset resources, data requests are not versioned along with the app. They're cached according to
manually-configured policies that are more useful for situations such as API requests and other data
dependencies.

updateMode

resources

dataGroups

Data groups follow this Typescript interface:

export interface DataGroup {
 name: string;
 urls: string[];
 version?: number;
 cacheConfig: {
 maxSize: number;
 maxAge: string;
 timeout?: string;
 strategy?: 'freshness' | 'performance';
 };
}

Similar to assetGroups , every data group has a name which uniquely identifies it.

A list of URL patterns. URLs that match these patterns will be cached according to this data group's policy.

Occasionally APIs change formats in a way that is not backward-compatible. A new version of the app may not
be compatible with the old API format and thus may not be compatible with existing cached resources from that
API.

version provides a mechanism to indicate that the resources being cached have been updated in a
backwards-incompatible way, and that the old cache entries—those from previous versions—should be
discarded.

version is an integer field and defaults to 0 .

This section defines the policy by which matching requests will be cached.

(required) The maximum number of entries, or responses, in the cache. Open-ended caches can grow in

name

urls

version

cacheConfig

maxSize

unbounded ways and eventually exceed storage quotas, calling for eviction.

(required) The maxAge parameter indicates how long responses are allowed to remain in the cache before
being considered invalid and evicted. maxAge is a duration string, using the following unit suffixes:

d : days
h : hours
m : minutes
s : seconds
u : milliseconds

For example, the string 3d12h will cache content for up to three and a half days.

This duration string specifies the network timeout. The network timeout is how long the Angular service worker
will wait for the network to respond before using a cached response, if configured to do so.

The Angular service worker can use either of two caching strategies for data resources.

performance , the default, optimizes for responses that are as fast as possible. If a resource exists in
the cache, the cached version is used. This allows for some staleness, depending on the maxAge , in
exchange for better performance. This is suitable for resources that don't change often; for example, user
avatar images.

freshness optimizes for currency of data, preferentially fetching requested data from the network.
Only if the network times out, according to timeout , does the request fall back to the cache. This is
useful for resources that change frequently; for example, account balances.

maxAge

timeout

strategy

This page is a reference for deploying and supporting production apps that use the Angular service worker. It
explains how the Angular service worker fits into the larger production environment, the service worker's
behavior under various conditions, and available recourses and fail-safes.

Conceptually, you can imagine the Angular service worker as a forward cache or a CDN edge that is installed
in the end user's web browser. The service worker's job is to satisfy requests made by the Angular app for
resources or data from a local cache, without needing to wait for the network. Like any cache, it has rules for
how content is expired and updated.

{@a versions}

In the context of an Angular service worker, a "version" is a collection of resources that represent a specific
build of the Angular app. Whenever a new build of the app is deployed, the service worker treats that build as a
new version of the app. This is true even if only a single file is updated. At any given time, the service worker
may have multiple versions of the app in its cache and it may be serving them simultaneously. For more
information, see the App tabs section below.

To preserve app integrity, the Angular service worker groups all files into a version together. The files grouped
into a version usually include HTML, JS, and CSS files. Grouping of these files is essential for integrity because
HTML, JS, and CSS files frequently refer to each other and depend on specific content. For example, an
index.html file might have a <script> tag that references bundle.js and it might attempt to call a

function startApp() from within that script. Any time this version of index.html is served, the
corresponding bundle.js must be served with it. For example, assume that the startApp() function is
renamed to runApp() in both files. In this scenario, it is not valid to serve the old index.html , which
calls startApp() , along with the new bundle, which defines runApp() .

This file integrity is especially important when lazy loading modules. A JS bundle may reference many lazy
chunks, and the filenames of the lazy chunks are unique to the particular build of the app. If a running app at
version X attempts to load a lazy chunk, but the server has updated to version X + 1 already, the lazy
loading operation will fail.

DevOps: Angular service worker in production

Service worker and caching of app resources

App versions

The version identifier of the app is determined by the contents of all resources, and it changes if any of them
change. In practice, the version is determined by the contents of the ngsw.json file, which includes hashes
for all known content. If any of the cached files change, the file's hash will change in ngsw.json , causing
the Angular service worker to treat the active set of files as a new version.

With the versioning behavior of the Angular service worker, an application server can ensure that the Angular
app always has a consistent set of files.

Every time the Angular service worker starts, it checks for updates to the app by looking for updates to the
ngsw.json manifest.

Note that the service worker starts periodically throughout the usage of the app because the web browser
terminates the service worker if the page is idle beyond a given timeout.

One of the potential side effects of long caching is inadvertently caching an invalid resource. In a normal HTTP
cache, a hard refresh or cache expiration limits the negative effects of caching an invalid file. A service worker
ignores such constraints and effectively long caches the entire app. Consequently, it is essential that the
service worker get the correct content.

To ensure resource integrity, the Angular service worker validates the hashes of all resources for which it has a
hash. Typically for a CLI app, this is everything in the dist directory covered by the user's
src/ngsw-config.json configuration.

If a particular file fails validation, the Angular service worker attempts to re-fetch the content using a "cache-
busting" URL parameter to eliminate the effects of browser or intermediate caching. If that content also fails
validation, the service worker considers the entire version of the app to be invalid and it stops serving the app.
If necessary, the service worker enters a safe mode where requests fall back on the network, opting not to use
its cache if the risk of serving invalid, broken, or outdated content is high.

Hash mismatches can occur for a variety of reasons:

Caching layers in between the origin server and the end user could serve stale content.
A non-atomic deployment could result in the Angular service worker having visibility of partially updated
content.
Errors during the build process could result in updated resources without ngsw.json being updated.
The reverse could also happen resulting in an updated ngsw.json without updated resources.

Update checks

Resource integrity

The only resources that have hashes in the ngsw.json manifest are resources that were present in the
dist directory at the time the manifest was built. Other resources, especially those loaded from CDNs, have

content that is unknown at build time or are updated more frequently than the app is deployed.

If the Angular service worker does not have a hash to validate a given resource, it still caches its contents but it
honors the HTTP caching headers by using a policy of "stale while revalidate." That is, when HTTP caching
headers for a cached resource indicate that the resource has expired, the Angular service worker continues to
serve the content and it attempts to refresh the resource in the background. This way, broken unhashed
resources do not remain in the cache beyond their configured lifetimes.

{@a tabs}

It can be problematic for an app if the version of resources it's receiving changes suddenly or without warning.
See the Versions section above for a description of such issues.

The Angular service worker provides a guarantee: a running app will continue to run the same version of the
app. If another instance of the app is opened in a new web browser tab, then the most current version of the
app is served. As a result, that new tab can be running a different version of the app than the original tab.

It's important to note that this guarantee is stronger than that provided by the normal web deployment model.
Without a service worker, there is no guarantee that code lazily loaded later in a running app is from the same
version as the initial code for the app.

There are a few limited reasons why the Angular service worker might change the version of a running app.
Some of them are error conditions:

The current version becomes invalid due to a failed hash.
An unrelated error causes the service worker to enter safe mode; that is, temporary deactivation.

The Angular service worker is aware of which versions are in use at any given moment and it cleans up
versions when no tab is using them.

Other reasons the Angular service worker might change the version of a running app are normal events:

The page is reloaded/refreshed.
The page requests an update be immediately activated via the SwUpdate service.

Unhashed content

App tabs

Service worker updates

The Angular service worker is a small script that runs in web browsers. From time to time, the service worker
will be updated with bug fixes and feature improvements.

The Angular service worker is downloaded when the app is first opened and when the app is accessed after a
period of inactivity. If the service worker has changed, the service worker will be updated in the background.

Most updates to the Angular service worker are transparent to the app—the old caches are still valid and
content is still served normally. However, occasionally a bugfix or feature in the Angular service worker requires
the invalidation of old caches. In this case, the app will be refreshed transparently from the network.

Occasionally, it may be necessary to examine the Angular service worker in a running state to investigate
issues or to ensure that it is operating as designed. Browsers provide built-in tools for debugging service
workers and the Angular service worker itself includes useful debugging features.

The Angular service worker exposes debugging information under the ngsw/ virtual directory. Currently, the
single exposed URL is ngsw/state . Here is an example of this debug page's contents:

NGSW Debug Info:

Driver state: NORMAL ((nominal))
Latest manifest hash: eea7f5f464f90789b621170af5a569d6be077e5c
Last update check: never

=== Version eea7f5f464f90789b621170af5a569d6be077e5c ===

Clients: 7b79a015-69af-4d3d-9ae6-95ba90c79486, 5bc08295-aaf2-42f3-a4cc-9e4ef9100f65

=== Idle Task Queue ===
Last update tick: 1s496u
Last update run: never
Task queue:
 * init post-load (update, cleanup)

Debug log:

The first line indicates the driver state:

Debugging the Angular service worker

Locating and analyzing debugging information

Driver state

Driver state: NORMAL ((nominal))

NORMAL indicates that the service worker is operating normally and is not in a degraded state.

There are two possible degraded states:

EXISTING_CLIENTS_ONLY : the service worker does not have a clean copy of the latest known version
of the app. Older cached versions are safe to use, so existing tabs continue to run from cache, but new
loads of the app will be served from the network.

SAFE_MODE : the service worker cannot guarantee the safety of using cached data. Either an
unexpected error occurred or all c ached versions are invalid. All traffic will be served from the network,
running as little service worker code as possible.

In both cases, the parenthetical annotation provides the error that caused the service worker to enter the
degraded state.

Latest manifest hash: eea7f5f464f90789b621170af5a569d6be077e5c

This is the SHA1 hash of the most up-to-date version of the app that the service worker knows about.

Last update check: never

This indicates the last time the service worker checked for a new version, or update, of the app. never
indicates that the service worker has never checked for an update.

In this example debug file, the update check is currently scheduled, as explained the next section.

=== Version eea7f5f464f90789b621170af5a569d6be077e5c ===

Clients: 7b79a015-69af-4d3d-9ae6-95ba90c79486, 5bc08295-aaf2-42f3-a4cc-9e4ef9100f65

In this example, the service worker has one version of the app cached and being used to serve two different
tabs. Note that this version hash is the "latest manifest hash" listed above. Both clients are on the latest

Latest manifest hash

Last update check

Version

version. Each client is listed by its ID from the Clients API in the browser.

=== Idle Task Queue ===
Last update tick: 1s496u
Last update run: never
Task queue:
 * init post-load (update, cleanup)

The Idle Task Queue is the queue of all pending tasks that happen in the background in the service worker. If
there are any tasks in the queue, they are listed with a description. In this example, the service worker has one
such task scheduled, a post-initialization operation involving an update check and cleanup of stale caches.

The last update tick/run counters give the time since specific events happened related to the idle queue. The
"Last update run" counter shows the last time idle tasks were actually executed. "Last update tick" shows the
time since the last event after which the queue might be processed.

Debug log:

Errors that occur within the service worker will be logged here.

Browsers such as Chrome provide developer tools for interacting with service workers. Such tools can be
powerful when used properly, but there are a few things to keep in mind.

When using developer tools, the service worker is kept running in the background and never restarts. For
the Angular service worker, this means that update checks to the app will generally not happen.

If you look in the Cache Storage viewer, the cache is frequently out of date. Right click the Cache Storage
title and refresh the caches.

Stopping and starting the service worker in the Service Worker pane triggers a check for updates.

Like any complex system, bugs or broken configurations can cause the Angular service worker to act in
unforeseen ways. While its design attempts to minimize the impact of such problems, the Angular service

Idle task queue

Debug log

Developer Tools

Fail-safe

worker contains a failsafe mechanism in case an administrator ever needs to deactivate the service worker
quickly.

To deactivate the service worker, remove or rename the ngsw-config.json file. When the service
worker's request for ngsw.json returns a 404 , then the service worker removes all of its caches and de-
registers itself, essentially self-destructing.

Beginning in Angular 5.0.0, you can easily enable Angular service worker support in any CLI project. This
document explains how to enable Angular service worker support in new and existing projects. It then uses a
simple example to show you a service worker in action, demonstrating loading and basic caching.

See the .

If you're generating a new CLI project, you can use the CLI to set up the Angular service worker as part of
creating the project. To do so, add the --service-worker flag to the ng new command:

ng new my-project --service-worker

The --service-worker flag takes care of configuring your app to use service workers by adding the
service-worker package along with setting up the necessary files to support service workers. For

information on the details, see the following section which covers the process in detail as it shows you how to
add a service worker manually to an existing app.

To add a service worker to an existing app:

1. Add the service worker package.
2. Enable service worker build support in the CLI.
3. Import and register the service worker.
4. Create the service worker configuration file, which specifies the caching behaviors and other settings.
5. Build the project.

Add the package @angular/service-worker , using the yarn utility as shown here:

yarn add @angular/service-worker

Getting started

Adding a service worker to a new application

Adding a service worker to an existing app

Step 1: Add the service worker package

To enable the Angular service worker, the CLI must generate an Angular service worker manifest at build time.
To cause the CLI to generate the manifest for an existing project, set the serviceWorker flag to true in
the project's .angular-cli.json file as shown here:

ng set apps.0.serviceWorker=true

To import and register the Angular service worker:

At the top of the root module, src/app/app.module.ts , import ServiceWorkerModule and
environment .

Add ServiceWorkerModule to the @NgModule imports array. Use the register() helper to
take care of registering the service worker, taking care to disable the service worker when not running in
production mode.

The file ngsw-worker.js is the name of the prebuilt service worker script, which the CLI copies into
dist/ to deploy along with your server.

The Angular CLI needs a service worker configuration file, called ngsw-config.json . The configuration
file controls how the service worker caches files and data resources.

You can begin with the boilerplate version from the CLI, which configures sensible defaults for most
applications.

Alternately, save the following as src/ngsw-config.json :

Finally, build the project:

ng build --prod

The CLI project is now set up to use the Angular service worker.

Step 2: Enable service worker build support in the CLI

Step 3: Import and register the service worker

Step 4: Create the configuration file, ngsw-config.json

Step 5: Build the project

This section demonstrates a service worker in action, using an example application.

As ng serve does not work with service workers, you must use a real HTTP server to test your project
locally. It's a good idea to test on a dedicated port.

cd dist
http-server -p 8080

With the server running, you can point your browser at http://localhost:8080/. Your application should load
normally.

Tip: When testing Angular service workers, it's a good idea to use an incognito or private window in your
browser to ensure the service worker doesn't end up reading from a previous leftover state, which can cause
unexpected behavior.

To simulate a network issue, disable network interaction for your application. In Chrome:

1. Select Tools > Developer Tools (from the Chrome menu located at the top right corner).
2. Go to the Network tab.
3. Check the Offline box.

Now the app has no access to network interaction.

For applications that do not use the Angular service worker, refreshing now would display Chrome's Internet
disconnected page that says "There is no Internet connection".

With the addition of an Angular service worker, the application behavior changes. On a refresh, the page loads
normally.

Service worker in action: a tour

Serving with http-server

Initial load

Simulating a network issue

If you look at the Network tab, you can verify that the service worker is active.

Notice that under the "Size" column, the requests state is (from ServiceWorker) . This means that the
resources are not being loaded from the network. Instead, they are being loaded from the service worker's
cache.

Notice that all of the files the browser needs to render this application are cached. The ngsw-config.json
boilerplate configuration is set up to cache the specific resources used by the CLI:

index.html .
favicon.ico .

Build artifacts (JS and CSS bundles).
Anything under assets .

Now that you've seen how service workers cache your application, the next step is understanding how updates
work.

1. If you're testing in an incognito window, open a second blank tab. This will keep the incognito and the
cache state alive during your test.

2. Close the application tab, but not the window. This should also close the Developer Tools.

3. Shut down http-server .

4. Next, make a change to the application, and watch the service worker install the update.

5. Open src/app/app.component.html for editing.

6. Change the text Welcome to {{title}}! to Bienvenue à {{title}}! .

7. Build and run the server again:

What's being cached?

Making changes to your application

ng build --prod
cd dist
http-server -p 8080

Now look at how the browser and service worker handle the updated application.

1. Open http://localhost:8080 again in the same window. What happens?

What went wrong? Nothing, actually. The Angular service worker is doing its job and serving the version of the
application that it has installed, even though there is an update available. In the interest of speed, the service
worker doesn't wait to check for updates before it serves the application that it has cached.

If you look at the http-server logs, you can see the service worker requesting /ngsw.json . This is

Updating your application in the browser

how the service worker checks for updates.

1. Refresh the page.

The service worker installed the updated version of your app in the background, and the next time the page is
loaded or reloaded, the service worker switches to the latest version.

Service workers augment the traditional web deployment model and empower applications to deliver a user
experience with the reliability and performance on par with natively-installed code.

At its simplest, a service worker is a script that runs in the web browser and manages caching for an
application.

Service workers function as a network proxy. They intercept all outgoing HTTP requests made by the
application and can choose how to respond to them. For example, they can query a local cache and deliver a
cached response if one is available. Proxying isn't limited to requests made through programmatic APIs, such
as fetch ; it also includes resources referenced in HTML and even the initial request to index.html .
Service worker-based caching is thus completely programmable and doesn't rely on server-specified caching
headers.

Unlike the other scripts that make up an application, such as the Angular app bundle, the service worker is
preserved after the user closes the tab. The next time that browser loads the application, the service worker
loads first, and can intercept every request for resources to load the application. If the service worker is
designed to do so, it can completely satisfy the loading of the application, without the need for the network.

Even across a fast reliable network, round-trip delays can introduce significant latency when loading the
application. Using a service worker to reduce dependency on the network can significantly improve the user
experience.

Angular applications, as single-page applications, are in a prime position to benefit from the advantages of
service workers. Starting with version 5.0.0, Angular ships with a service worker implementation. Angular
developers can take advantage of this service worker and benefit from the increased reliability and
performance it provides, without needing to code against low-level APIs.

Angular's service worker is designed to optimize the end user experience of using an application over a slow or
unreliable network connection, while also minimizing the risks of serving outdated content.

The Angular service worker's behavior follows that design goal:

Caching an application is like installing a native application. The application is cached as one unit, and all
files update together.

Introduction to Angular service workers

Service workers in Angular

A running application continues to run with the same version of all files. It does not suddenly start
receiving cached files from a newer version, which are likely incompatible.
When users refresh the application, they see the latest fully cached version. New tabs load the latest
cached code.
Updates happen in the background, relatively quickly after changes are published. The previous version of
the application is served until an update is installed and ready.
The service worker conserves bandwidth when possible. Resources are only downloaded if they've
changed.

To support these behaviors, the Angular service worker loads a manifest file from the server. The manifest
describes the resources to cache and includes hashes of every file's contents. When an update to the
application is deployed, the contents of the manifest change, informing the service worker that a new version of
the application should be downloaded and cached. This manifest is generated from a user-provided
configuration file called ngsw-config.json , by using a build tool such as the Angular CLI.

Installing the Angular service worker is as simple as including an NgModule . In addition to registering the
Angular service worker with the browser, this also makes a few services available for injection which interact
with the service worker and can be used to control it. For example, an application can ask to be notified when a
new update becomes available, or an application can ask the service worker to check the server for available
updates.

To use Angular service workers, you must have the following Angular and CLI versions:

Angular 5.0.0 or later.
Angular CLI 1.6.0 or later.

Your application must run in a web browser that supports service workers. Currently, the latest versions of
Chrome and Firefox are supported. To learn about other browsers that are service worker ready, see the Can I
Use page.

For more information about service workers in general, see Service Workers: an Introduction.

For more information about browser support, see the browser support section of Service Workers: an
Introduction, Jake Archibald's Is Serviceworker ready?, and Can I Use.

The remainder of this Angular documentation specifically addresses the Angular implementation of service

Prerequisites

Related resources

workers.

{@a top}

Your app should be able to make the browser title bar say whatever you want it to say. This cookbook explains
how to do it.

See the .

 To see the browser title bar change in the live example, open it again
in the Plunker editor by clicking the icon in the upper right, then pop out the preview window by clicking the blue
'X' button in the upper right corner.

The obvious approach is to bind a property of the component to the HTML <title> like this:

<title>{{ThisDoesNot_Work}}</title>

Sorry but that won't work. The root component of the application is an element contained within the <body>
tag. The HTML <title> is in the document <head> , outside the body, making it inaccessible to Angular
data binding.

You could grab the browser document object and set the title manually. That's dirty and undermines your
chances of running the app outside of a browser someday.

Running your app outside a browser means that you can take advantage of server-side pre-rendering for near-
instant first app render times and for SEO. It means you could run from inside a Web Worker to improve your
app's responsiveness by using multiple threads. And it means that you could run your app inside Electron.js or
Windows Universal to deliver it to the desktop.

Fortunately, Angular bridges the gap by providing a Title service as part of the Browser platform. The Title
service is a simple class that provides an API for getting and setting the current HTML document title:

getTitle() : string —Gets the title of the current HTML document.
setTitle(newTitle : string) —Sets the title of the current HTML document.

Set the Document Title

The problem with <title>

Use the Title service

You can inject the Title service into the root AppComponent and expose a bindable setTitle
method that calls it:

Bind that method to three anchor tags and voilà!

Here's the complete solution:

Generally you want to provide application-wide services in the root application component, AppComponent .

This cookbook recommends registering the title service during bootstrapping, a location you reserve for
configuring the runtime Angular environment.

That's exactly what you're doing. The Title service is part of the Angular browser platform. If you bootstrap
your application into a different platform, you'll have to provide a different Title service that understands
the concept of a "document title" for that specific platform. Ideally, the application itself neither knows nor cares
about the runtime environment.

Why provide the Title service in bootstrap

The documentation setup procedures install a lot of files. Most of them can be safely ignored.

Application files inside the src/ and e2e/ folders matter most to developers.

Files outside those folders condition the development environment. They rarely change and you may never
view or modify them. If you do, this page can help you understand their purpose.

File Purpose

src/app/ Angular application files go here. Ships with the "Hello Angular"
sample's `AppComponent`, `AppModule`, a component unit test
(`app.component.spec.ts`), and the bootstrap file, `main.ts`. Try the
sample application and the unit test as _live examples_.

e2e/ _End-to-end_ (e2e) tests of the application, written in Jasmine and
run by the protractor e2e test runner. Initialized with an e2e test for
the "Hello Angular" sample.

node_modules/ The _npm_ packages installed with the `npm install` command.

.editorconfig

.git/

.gitignore

.travis.yml

Tooling configuration files and folders. Ignore them until you have a
compelling reason to do otherwise.

CHANGELOG.md The history of changes to the _QuickStart_ repository. Delete or
ignore.

favicon.ico The application icon that appears in the browser tab.

index.html The application host page. It loads a few essential scripts in a
prescribed order. Then it boots the application, placing the root
`AppComponent` in the custom `` body tag. The same `index.html`
satisfies all documentation application samples.

karma.conf.js Configuration for the karma test runner described in the [Testing]
(guide/testing) guide.

karma-test-shim.js Script to run karma with SystemJS as described in the [Testing]

Anatomy of the Setup Project

(guide/testing) guide.

non-essential-files.txt A list of files that you can delete if you want to purge your setup of
the original QuickStart Seed testing and git maintenance artifacts.
See instructions in the optional [_Deleting non-essential files_]
(guide/setup#non-essential "Setup: Deleting non-essential files")
section. *Do this only in the beginning to avoid accidentally deleting
your own tests and git setup!*

LICENSE The open source MIT license to use this setup code in your
application.

package.json Identifies `npm `package dependencies for the project. Contains
command scripts for running the application, running tests, and
more. Enter `npm run` for a listing. Read more about them.

protractor.config.js Configuration for the protractor _end-to-end_ (e2e) test runner.

README.md Instruction for using this git repository in your project. Worth reading
before deleting.

styles.css Global styles for the application. Initialized with an `

systemjs

.config.js

Tells the **SystemJS** module loader where to find modules
referenced in JavaScript `import` statements. For example: import {
Component } from '@angular/core; Don't touch this file unless you
are fully versed in SystemJS configuration.

systemjs

.config.extras.js

Optional extra SystemJS configuration. A way to add SystemJS
mappings, such as for application _barrels_, without changing the
original `system.config.js`.

tsconfig.json Tells the TypeScript compiler how to transpile TypeScript source
files into JavaScript files that run in all modern browsers.

tslint.json The `npm` installed TypeScript linter inspects your TypeScript code
and complains when you violate one of its rules. This file defines
linting rules favored by the [Angular style guide](guide/styleguide)
and by the authors of the documentation.

` style for the QuickStart demo.

{@a develop-locally}

The QuickStart live-coding example is an Angular playground. It's not where you'd develop a real application.
You should develop locally on your own machine ... and that's also how we think you should learn Angular.

Setting up a new project on your machine is quick and easy with the QuickStart seed, maintained on github.

Make sure you have node and npm installed.

{@a clone}

Perform the clone-to-launch steps with these terminal commands.

git clone https://github.com/angular/quickstart.git quickstart cd quickstart npm install npm start

`npm start` fails in _Bash for Windows_ in versions earlier than the Creator's Update (April 2017).

{@a download}

Download the QuickStart seed and unzip it into your project folder. Then perform the remaining steps with
these terminal commands.

cd quickstart npm install npm start

`npm start` fails in _Bash for Windows_ in versions earlier than the Creator's Update (April 2017).

{@a non-essential}

You can quickly delete the non-essential files that concern testing and QuickStart repository maintenance
(including all git-related artifacts such as the .git folder and .gitignore !).

Setup for local development

Clone

Download

Delete non-essential files (optional)

Do this only in the beginning to avoid accidentally deleting your own tests and git setup!

Open a terminal window in the project folder and enter the following commands for your environment:

xargs rm -rf < non-essential-files.osx.txt rm src/app/.spec.ts rm non-essential-files.osx.txt

for /f %i in (non-essential-files.txt) do del %i /F /S /Q rd .git /s /q rd e2e /s /q

{@a seed}

The QuickStart seed contains the same application as the QuickStart playground. But its true purpose is to
provide a solid foundation for local development. Consequently, there are many more files in the project folder
on your machine, most of which you can learn about later.

{@a app-files}

Focus on the following three TypeScript (.ts) files in the /src folder.

src
app
app.component.ts
app.module.ts
main.ts

All guides and cookbooks have at least these core files. Each file has a distinct purpose and evolves
independently as the application grows.

Files outside src/ concern building, deploying, and testing your app. They include configuration files and
external dependencies.

Files inside src/ "belong" to your app. Add new Typescript, HTML and CSS files inside the src/
directory, most of them inside src/app , unless told to do otherwise.

The following are all in src/

OS/X (bash)

Windows

What's in the QuickStart seed?

File Purpose

app/app.component.ts Defines the same `AppComponent` as the one in the QuickStart
playground. It is the **root** component of what will become a tree of
nested components as the application evolves.

app/app.module.ts Defines `AppModule`, the [root module](guide/bootstrapping
"AppModule: the root module") that tells Angular how to assemble the
application. Right now it declares only the `AppComponent`. Soon there
will be more components to declare.

main.ts Compiles the application with the [JIT compiler](guide/glossary#jit) and
[bootstraps](guide/bootstrapping#main "bootstrap the application") the
application's main module (`AppModule`) to run in the browser. The JIT
compiler is a reasonable choice during the development of most projects
and it's the only viable choice for a sample running in a _live-coding_
environment like Plunker. You'll learn about alternative compiling and
[deployment](guide/deployment) options later in the documentation.

Next Step If you're new to Angular, we recommend you follow the [tutorial](tutorial "Tour of Heroes
tutorial").

{@a install-prerequisites}

Node.js and npm are essential to modern web development with Angular and other platforms. Node powers
client development and build tools. The npm package manager, itself a node application, installs JavaScript
libraries.

Get them now if they're not already installed on your machine.

Verify that you are running node v4.x.x or higher and npm 3.x.x or higher by running the
commands node -v and npm -v in a terminal/console window. Older versions produce errors.

We recommend nvm for managing multiple versions of node and npm. You may need nvm if you already have

Appendix: node and npm

projects running on your machine that use other versions of node and npm.

{@a why-locally}

Live coding in the browser is a great way to explore Angular.

Links on almost every documentation page open completed samples in the browser. You can play with the
sample code, share your changes with friends, and download and run the code on your own machine.

The QuickStart shows just the AppComponent file. It creates the equivalent of app.module.ts and
main.ts internally for the playground only. so the reader can discover Angular without distraction. The

other samples are based on the QuickStart seed.

As much fun as this is ...

you can't ship your app in plunker
you aren't always online when writing code
transpiling TypeScript in the browser is slow
the type support, refactoring, and code completion only work in your local IDE

Use the live coding environment as a playground, a place to try the documentation samples and experiment on
your own. It's the perfect place to reproduce a bug when you want to file a documentation issue or file an issue
with Angular itself.

For real development, we strongly recommend developing locally.

Appendix: Why develop locally

This guide looks at how Angular manipulates the DOM with structural directives and how you can write your
own structural directives to do the same thing.

Try the .

{@a definition}

Structural directives are responsible for HTML layout. They shape or reshape the DOM's structure, typically by
adding, removing, or manipulating elements.

As with other directives, you apply a structural directive to a host element. The directive then does whatever it's
supposed to do with that host element and its descendants.

Structural directives are easy to recognize. An asterisk (*) precedes the directive attribute name as in this
example.

No brackets. No parentheses. Just *ngIf set to a string.

You'll learn in this guide that the asterisk (*) is a convenience notation and the string is a microsyntax rather
than the usual template expression. Angular desugars this notation into a marked-up <ng-template> that
surrounds the host element and its descendents. Each structural directive does something different with that
template.

Three of the common, built-in structural directives—NgIf, NgFor, and NgSwitch...—are described in the
Template Syntax guide and seen in samples throughout the Angular documentation. Here's an example of
them in a template:

This guide won't repeat how to use them. But it does explain how they work and how to write your own
structural directive.

Directive spelling
Throughout this guide, you'll see a directive spelled in both _UpperCamelCase_ and _lowerCamelCase_.
Already you've seen `NgIf` and `ngIf`. There's a reason. `NgIf` refers to the directive _class_; `ngIf` refers to the
directive's _attribute name_. A directive _class_ is spelled in _UpperCamelCase_ (`NgIf`). A directive's
attribute name is spelled in _lowerCamelCase_ (`ngIf`). The guide refers to the directive _class_ when

Structural Directives

What are structural directives?

talking about its properties and what the directive does. The guide refers to the _attribute name_ when
describing how you apply the directive to an element in the HTML template.
There are two other kinds of Angular directives, described extensively elsewhere: (1) components and
(2) attribute directives. A *component* manages a region of HTML in the manner of a native HTML element.
Technically it's a directive with a template. An [*attribute* directive](guide/attribute-directives) changes the
appearance or behavior of an element, component, or another directive. For example, the built-in [`NgStyle`]
(guide/template-syntax#ngStyle) directive changes several element styles at the same time. You can apply
many _attribute_ directives to one host element. You can [only apply one](guide/structural-directives#one-per-
element) _structural_ directive to a host element.

{@a ngIf}

NgIf is the simplest structural directive and the easiest to understand. It takes a boolean expression and
makes an entire chunk of the DOM appear or disappear.

The ngIf directive doesn't hide elements with CSS. It adds and removes them physically from the DOM.
Confirm that fact using browser developer tools to inspect the DOM.

The top paragraph is in the DOM. The bottom, disused paragraph is not; in its place is a comment about
"bindings" (more about that later).

When the condition is false, NgIf removes its host element from the DOM, detaches it from DOM events
(the attachments that it made), detaches the component from Angular change detection, and destroys it. The
component and DOM nodes can be garbage-collected and free up memory.

A directive could hide the unwanted paragraph instead by setting its display style to none .

While invisible, the element remains in the DOM.

NgIf case study

Why remove rather than hide?

The difference between hiding and removing doesn't matter for a simple paragraph. It does matter when the
host element is attached to a resource intensive component. Such a component's behavior continues even
when hidden. The component stays attached to its DOM element. It keeps listening to events. Angular keeps
checking for changes that could affect data bindings. Whatever the component was doing, it keeps doing.

Although invisible, the component—and all of its descendant components—tie up resources. The performance
and memory burden can be substantial, responsiveness can degrade, and the user sees nothing.

On the positive side, showing the element again is quick. The component's previous state is preserved and
ready to display. The component doesn't re-initialize—an operation that could be expensive. So hiding and
showing is sometimes the right thing to do.

But in the absence of a compelling reason to keep them around, your preference should be to remove DOM
elements that the user can't see and recover the unused resources with a structural directive like NgIf .

These same considerations apply to every structural directive, whether built-in or custom. Before
applying a structural directive, you might want to pause for a moment to consider the consequences of adding
and removing elements and of creating and destroying components.

{@a asterisk}

Surely you noticed the asterisk (*) prefix to the directive name and wondered why it is necessary and what it
does.

Here is *ngIf displaying the hero's name if hero exists.

The asterisk is "syntactic sugar" for something a bit more complicated. Internally, Angular translates the
*ngIf attribute into a <ng-template> element, wrapped around the host element, like this.

The *ngIf directive moved to the <ng-template> element where it became a property

The asterisk (*) prefix

binding, [ngIf] .
The rest of the <div> , including its class attribute, moved inside the <ng-template> element.

The first form is not actually rendered, only the finished product ends up in the DOM.

Angular consumed the <ng-template> content during its actual rendering and replaced the
<ng-template> with a diagnostic comment.

The NgFor and NgSwitch... directives follow the same pattern.

{@a ngFor}

Angular transforms the *ngFor in similar fashion from asterisk (*) syntax to <ng-template> element.

Here's a full-featured application of NgFor , written both ways:

This is manifestly more complicated than ngIf and rightly so. The NgFor directive has more features,
both required and optional, than the NgIf shown in this guide. At minimum NgFor needs a looping
variable (let hero) and a list (heroes).

You enable these features in the string assigned to ngFor , which you write in Angular's microsyntax.

Everything _outside_ the `ngFor` string stays with the host element (the `
`) as it moves inside the ``. In this example, the `[ngClass]="odd"` stays on the `
`.

{@a microsyntax}

The Angular microsyntax lets you configure a directive in a compact, friendly string. The microsyntax parser
translates that string into attributes on the <ng-template> :

The let keyword declares a template input variable that you reference within the template. The input
variables in this example are hero , i , and odd . The parser translates let hero , let i ,
and let odd into variables named, let-hero , let-i , and let-odd .

Inside *ngFor

Microsyntax

The microsyntax parser takes of and trackBy , title-cases them (of -> Of , trackBy ->
TrackBy), and prefixes them with the directive's attribute name (ngFor), yielding the names
ngForOf and ngForTrackBy . Those are the names of two NgFor input properties . That's how

the directive learns that the list is heroes and the track-by function is trackById .

As the NgFor directive loops through the list, it sets and resets properties of its own context object.
These properties include index and odd and a special property named $implicit .

The let-i and let-odd variables were defined as let i=index and let odd=odd .
Angular sets them to the current value of the context's index and odd properties.

The context property for let-hero wasn't specified. It's intended source is implicit. Angular sets
let-hero to the value of the context's $implicit property which NgFor has initialized with the

hero for the current iteration.

The API guide describes additional NgFor directive properties and context properties.

NgFor is implemented by the NgForOf directive. Read more about additional NgForOf directive
properties and context properties NgForOf API reference.

These microsyntax mechanisms are available to you when you write your own structural directives. Studying
the source code for NgIf and NgForOf is a great way to learn more.

{@a template-input-variable}

{@a template-input-variables}

A template input variable is a variable whose value you can reference within a single instance of the template.
There are several such variables in this example: hero , i , and odd . All are preceded by the keyword
let .

A template input variable is not the same as a template reference variable, neither semantically nor
syntactically.

You declare a template input variable using the let keyword (let hero). The variable's scope is limited
to a single instance of the repeated template. You can use the same variable name again in the definition of
other structural directives.

You declare a template reference variable by prefixing the variable name with # (#var). A reference
variable refers to its attached element, component or directive. It can be accessed anywhere in the entire

Template input variable

template.

Template input and reference variable names have their own namespaces. The hero in let hero is
never the same variable as the hero declared as #hero .

{@a one-per-element}

Someday you'll want to repeat a block of HTML but only when a particular condition is true. You'll try to put both
an *ngFor and an *ngIf on the same host element. Angular won't let you. You may apply only one
structural directive to an element.

The reason is simplicity. Structural directives can do complex things with the host element and its descendents.
When two directives lay claim to the same host element, which one takes precedence? Which should go first,
the NgIf or the NgFor ? Can the NgIf cancel the effect of the NgFor ? If so (and it seems like it
should be so), how should Angular generalize the ability to cancel for other structural directives?

There are no easy answers to these questions. Prohibiting multiple structural directives makes them moot.
There's an easy solution for this use case: put the *ngIf on a container element that wraps the *ngFor
element. One or both elements can be an ng-container so you don't have to introduce extra levels of
HTML.

{@a ngSwitch}

The Angular NgSwitch is actually a set of cooperating directives: NgSwitch , NgSwitchCase , and
NgSwitchDefault .

Here's an example.

The switch value assigned to NgSwitch (hero.emotion) determines which (if any) of the switch cases
are displayed.

NgSwitch itself is not a structural directive. It's an attribute directive that controls the behavior of the other
two switch directives. That's why you write [ngSwitch] , never *ngSwitch .

NgSwitchCase and NgSwitchDefault are structural directives. You attach them to elements using the
asterisk (*) prefix notation. An NgSwitchCase displays its host element when its value matches the switch
value. The NgSwitchDefault displays its host element when no sibling NgSwitchCase matches the

One structural directive per host element

Inside NgSwitch directives

switch value.

The element to which you apply a directive is its _host_ element. The `` is the host element for the happy
`*ngSwitchCase`. The `` is the host element for the `*ngSwitchDefault`.

As with other structural directives, the NgSwitchCase and NgSwitchDefault can be desugared into
the <ng-template> element form.

{@a prefer-asterisk}

The asterisk (*) syntax is more clear than the desugared form. Use <ng-container> when there's no single
element to host the directive.

While there's rarely a good reason to apply a structural directive in template attribute or element form, it's still
important to know that Angular creates a <ng-template> and to understand how it works. You'll refer to
the <ng-template> when you write your own structural directive.

{@a template}

The <ng-template> is an Angular element for rendering HTML. It is never displayed directly. In fact, before
rendering the view, Angular replaces the <ng-template> and its contents with a comment.

If there is no structural directive and you merely wrap some elements in a <ng-template> , those elements
disappear. That's the fate of the middle "Hip!" in the phrase "Hip! Hip! Hooray!".

Angular erases the middle "Hip!", leaving the cheer a bit less enthusiastic.

A structural directive puts a <ng-template> to work as you'll see when you write your own structural
directive.

{@a ngcontainer}

Prefer the asterisk (*) syntax.

The <ng-template>

{@a ng-container}

There's often a root element that can and should host the structural directive. The list element () is a
typical host element of an NgFor repeater.

When there isn't a host element, you can usually wrap the content in a native HTML container element, such as
a <div> , and attach the directive to that wrapper.

Introducing another container element—typically a or <div> —to group the elements under a
single root is usually harmless. Usually ... but not always.

The grouping element may break the template appearance because CSS styles neither expect nor
accommodate the new layout. For example, suppose you have the following paragraph layout.

You also have a CSS style rule that happens to apply to a within a <p> aragraph.

The constructed paragraph renders strangely.

The p span style, intended for use elsewhere, was inadvertently applied here.

Another problem: some HTML elements require all immediate children to be of a specific type. For example,
the <select> element requires <option> children. You can't wrap the options in a conditional <div>
or a .

When you try this,

the drop down is empty.

The browser won't display an <option> within a .

The Angular <ng-container> is a grouping element that doesn't interfere with styles or layout because
Angular doesn't put it in the DOM.

Here's the conditional paragraph again, this time using <ng-container> .

Group sibling elements with <ng-container>

<ng-container> to the rescue

It renders properly.

Now conditionally exclude a select <option> with <ng-container> .

The drop down works properly.

The <ng-container> is a syntax element recognized by the Angular parser. It's not a directive,
component, class, or interface. It's more like the curly braces in a JavaScript if -block:

if (someCondition) { statement1; statement2; statement3; }

Without those braces, JavaScript would only execute the first statement when you intend to conditionally
execute all of them as a single block. The <ng-container> satisfies a similar need in Angular templates.

{@a unless}

In this section, you write an UnlessDirective structural directive that does the opposite of NgIf .
NgIf displays the template content when the condition is true . UnlessDirective displays the

content when the condition is false.

Creating a directive is similar to creating a component.

Import the Directive decorator (instead of the Component decorator).

Import the Input , TemplateRef , and ViewContainerRef symbols; you'll need them for any
structural directive.

Apply the decorator to the directive class.

Set the CSS attribute selector that identifies the directive when applied to an element in a template.

Here's how you might begin:

Write a structural directive

The directive's selector is typically the directive's attribute name in square brackets, [appUnless] . The
brackets define a CSS attribute selector.

The directive attribute name should be spelled in lowerCamelCase and begin with a prefix. Don't use ng .
That prefix belongs to Angular. Pick something short that fits you or your company. In this example, the prefix is
app .

The directive class name ends in Directive per the style guide. Angular's own directives do not.

A simple structural directive like this one creates an embedded view from the Angular-generated
<ng-template> and inserts that view in a view container adjacent to the directive's original <p> host

element.

You'll acquire the <ng-template> contents with a TemplateRef and access the view container through
a ViewContainerRef .

You inject both in the directive constructor as private variables of the class.

The directive consumer expects to bind a true/false condition to [appUnless] . That means the directive
needs an appUnless property, decorated with @Input

Read about `@Input` in the [_Template Syntax_](guide/template-syntax#inputs-outputs) guide.

Angular sets the appUnless property whenever the value of the condition changes. Because the
appUnless property does work, it needs a setter.

If the condition is falsy and the view hasn't been created previously, tell the view container to create the
embedded view from the template.

If the condition is truthy and the view is currently displayed, clear the container which also destroys the
view.

Nobody reads the appUnless property so it doesn't need a getter.

The completed directive code looks like this:

Add this directive to the declarations array of the AppModule.

Then create some HTML to try it.

TemplateRef and ViewContainerRef

The appUnless property

When the condition is falsy, the top (A) paragraph appears and the bottom (B) paragraph disappears.
When the condition is truthy, the top (A) paragraph is removed and the bottom (B) paragraph appears.

{@a summary}

You can both try and download the source code for this guide in the .

Here is the source from the src/app/ folder.

You learned

that structural directives manipulate HTML layout.
to use <ng-container> as a grouping element when there is no suitable host element.
that the Angular desugars asterisk (*) syntax into a <ng-template> .
how that works for the NgIf , NgFor and NgSwitch built-in directives.
about the microsyntax that expands into a <ng-template> .
to write a custom structural directive, UnlessDirective .

Summary

Looking for an opinionated guide to Angular syntax, conventions, and application structure? Step right in! This
style guide presents preferred conventions and, as importantly, explains why.

{@a toc}

Each guideline describes either a good or bad practice, and all have a consistent presentation.

The wording of each guideline indicates how strong the recommendation is.

Do is one that should always be followed. _Always_ might be a bit too strong of a word. Guidelines that
literally should always be followed are extremely rare. On the other hand, you need a really unusual case for
breaking a *Do* guideline.
Consider guidelines should generally be followed. If you fully understand the meaning behind the guideline
and have a good reason to deviate, then do so. Please strive to be consistent.
Avoid indicates something you should almost never do. Code examples to *avoid* have an unmistakeable
red header.
Why? gives reasons for following the previous recommendations.

Some code examples display a file that has one or more similarly named companion files. For example,
hero.component.ts and hero.component.html .

The guideline uses the shortcut hero.component.ts|html|css|spec to represent those various files.
Using this shortcut makes this guide's file structures easier to read and more terse.

{@a single-responsibility}

Apply the single responsibility principle (SRP) to all components, services, and other symbols. This helps make
the app cleaner, easier to read and maintain, and more testable.

Style Guide

Style vocabulary

File structure conventions

Single responsibility

{@a 01-01}

Do define one thing, such as a service or component, per file.
Consider limiting files to 400 lines of code.
Why? One component per file makes it far easier to read, maintain, and avoid collisions with teams in
source control.
Why? One component per file avoids hidden bugs that often arise when combining components in a file
where they may share variables, create unwanted closures, or unwanted coupling with dependencies.
Why? A single component can be the default export for its file which facilitates lazy loading with the router.

The key is to make the code more reusable, easier to read, and less mistake prone.

The following negative example defines the AppComponent , bootstraps the app, defines the Hero model
object, and loads heroes from the server all in the same file. Don't do this.

It is a better practice to redistribute the component and its supporting classes into their own, dedicated files.

As the app grows, this rule becomes even more important. Back to top

{@a 01-02}

Do define small functions
Consider limiting to no more than 75 lines.
Why? Small functions are easier to test, especially when they do one thing and serve one purpose.
Why? Small functions promote reuse.
Why? Small functions are easier to read.
Why? Small functions are easier to maintain.
Why? Small functions help avoid hidden bugs that come with large functions that share variables with
external scope, create unwanted closures, or unwanted coupling with dependencies.

Back to top

Rule of One

Style 01-01

Small functions

Style 01-02

Naming

Naming conventions are hugely important to maintainability and readability. This guide recommends naming
conventions for the file name and the symbol name.

{@a 02-01}

Do use consistent names for all symbols.
Do follow a pattern that describes the symbol's feature then its type. The recommended pattern is
`feature.type.ts`.
Why? Naming conventions help provide a consistent way to find content at a glance. Consistency within the
project is vital. Consistency with a team is important. Consistency across a company provides tremendous
efficiency.
Why? The naming conventions should simply help find desired code faster and make it easier to
understand.
Why? Names of folders and files should clearly convey their intent. For example, `app/heroes/hero-
list.component.ts` may contain a component that manages a list of heroes.

Back to top

{@a 02-02}

Do use dashes to separate words in the descriptive name.
Do use dots to separate the descriptive name from the type.
Do use consistent type names for all components following a pattern that describes the component's
feature then its type. A recommended pattern is `feature.type.ts`.
Do use conventional type names including `.service`, `.component`, `.pipe`, `.module`, and `.directive`.
Invent additional type names if you must but take care not to create too many.
Why? Type names provide a consistent way to quickly identify what is in the file.
Why? Type names make it easy to find a specific file type using an editor or IDE's fuzzy search techniques.
Why? Unabbreviated type names such as `.service` are descriptive and unambiguous. Abbreviations such
as `.srv`, `.svc`, and `.serv` can be confusing.
Why? Type names provide pattern matching for any automated tasks.

Back to top

General Naming Guidelines

Style 02-01

Separate file names with dots and dashes

Style 02-02

{@a 02-03}

Do use consistent names for all assets named after what they represent.
Do use upper camel case for class names.
Do match the name of the symbol to the name of the file.
Do append the symbol name with the conventional suffix (such as `Component`, `Directive`, `Module`,
`Pipe`, or `Service`) for a thing of that type.
Do give the filename the conventional suffix (such as `.component.ts`, `.directive.ts`, `.module.ts`, `.pipe.ts`,
or `.service.ts`) for a file of that type.
Why? Consistent conventions make it easy to quickly identify and reference assets of different types.

Symbol Name File Name

@Component({ ... }) export class AppComponent {
}

app.component.ts

@Component({ ... }) export class
HeroesComponent { }

heroes.component.ts

@Component({ ... }) export class
HeroListComponent { }

hero-list.component.ts

@Component({ ... }) export class
HeroDetailComponent { }

hero-detail.component.ts

@Directive({ ... }) export class ValidationDirective {
}

validation.directive.ts

@NgModule({ ... }) export class AppModule app.module.ts

@Pipe({ name: 'initCaps' }) export class
InitCapsPipe implements PipeTransform { }

init-caps.pipe.ts

@Injectable() export class UserProfileService { } user-profile.service.ts

Back to top

{@a 02-04}

Symbols and file names

Style 02-03

Do use consistent names for all services named after their feature.
Do suffix a service class name with `Service`. For example, something that gets data or heroes should be
called a `DataService` or a `HeroService`. A few terms are unambiguously services. They typically indicate
agency by ending in "-er". You may prefer to name a service that logs messages `Logger` rather than
`LoggerService`. Decide if this exception is agreeable in your project. As always, strive for consistency.
Why? Provides a consistent way to quickly identify and reference services.
Why? Clear service names such as `Logger` do not require a suffix.
Why? Service names such as `Credit` are nouns and require a suffix and should be named with a suffix
when it is not obvious if it is a service or something else.

Symbol Name File Name

@Injectable() export class HeroDataService { } hero-data.service.ts

@Injectable() export class CreditService { } credit.service.ts

@Injectable() export class Logger { } logger.service.ts

Back to top

{@a 02-05}

Do put bootstrapping and platform logic for the app in a file named `main.ts`.
Do include error handling in the bootstrapping logic.
Avoid putting app logic in `main.ts`. Instead, consider placing it in a component or service.
Why? Follows a consistent convention for the startup logic of an app.
Why? Follows a familiar convention from other technology platforms.

Back to top

{@a 02-06}

Service names

Style 02-04

Bootstrapping

Style 02-05

Directive selectors

Do Use lower camel case for naming the selectors of directives.
Why? Keeps the names of the properties defined in the directives that are bound to the view consistent with
the attribute names.
Why? The Angular HTML parser is case sensitive and recognizes lower camel case.

Back to top

{@a 02-07}

Do use a hyphenated, lowercase element selector value (e.g. `admin-users`).
Do use a custom prefix for a component selector. For example, the prefix `toh` represents from **T**our
of **H**eroes and the prefix `admin` represents an admin feature area.
Do use a prefix that identifies the feature area or the app itself.
Why? Prevents element name collisions with components in other apps and with native HTML elements.
Why? Makes it easier to promote and share the component in other apps.
Why? Components are easy to identify in the DOM.

{@a 02-08}

Do use a custom prefix for the selector of directives (e.g, the prefix `toh` from **T**our **o**f **H**eroes).
Do spell non-element selectors in lower camel case unless the selector is meant to match a native HTML
attribute.
Why? Prevents name collisions.
Why? Directives are easily identified.

Back to top

{@a 02-09}

Style 02-06

Custom prefix for components

Style 02-07

Custom prefix for directives

Style 02-08

Pipe names

Do use consistent names for all pipes, named after their feature.
Why? Provides a consistent way to quickly identify and reference pipes.

Symbol Name File Name

@Pipe({ name: 'ellipsis' }) export class EllipsisPipe
implements PipeTransform { }

ellipsis.pipe.ts

@Pipe({ name: 'initCaps' }) export class
InitCapsPipe implements PipeTransform { }

init-caps.pipe.ts

Back to top

{@a 02-10}

Do name test specification files the same as the component they test.
Do name test specification files with a suffix of `.spec`.
Why? Provides a consistent way to quickly identify tests.
Why? Provides pattern matching for [karma](http://karma-runner.github.io/) or other test runners.

Test Type File Names

Components
heroes.component.spec.ts hero-
list.component.spec.ts hero-
detail.component.spec.ts

Services
logger.service.spec.ts hero.service.spec.ts filter-
text.service.spec.ts

Pipes ellipsis.pipe.spec.ts init-caps.pipe.spec.ts

Back to top

{@a 02-11}

Style 02-09

Unit test file names

Style 02-10

End-to-End (E2E) test file names

Do name end-to-end test specification files after the feature they test with a suffix of `.e2e-spec`.
Why? Provides a consistent way to quickly identify end-to-end tests.
Why? Provides pattern matching for test runners and build automation.

Test Type File Names

End-to-End Tests app.e2e-spec.ts heroes.e2e-spec.ts

Back to top

{@a 02-12}

Do append the symbol name with the suffix `Module`.
Do give the file name the `.module.ts` extension.
Do name the module after the feature and folder it resides in.
Why? Provides a consistent way to quickly identify and reference modules.
Why? Upper camel case is conventional for identifying objects that can be instantiated using a constructor.
Why? Easily identifies the module as the root of the same named feature.
Do suffix a _RoutingModule_ class name with `RoutingModule`.
Do end the filename of a _RoutingModule_ with `-routing.module.ts`.
Why? A `RoutingModule` is a module dedicated exclusively to configuring the Angular router. A consistent
class and file name convention make these modules easy to spot and verify.

Symbol Name File Name

@NgModule({ ... }) export class AppModule { } app.module.ts

@NgModule({ ... }) export class HeroesModule { } heroes.module.ts

@NgModule({ ... }) export class VillainsModule { } villains.module.ts

@NgModule({ ... }) export class
AppRoutingModule { }

app-routing.module.ts

@NgModule({ ... }) export class
HeroesRoutingModule { }

heroes-routing.module.ts

Style 02-11

Angular NgModule names

Style 02-12

Back to top

Have a consistent set of coding, naming, and whitespace conventions.

{@a 03-01}

Do use upper camel case when naming classes.
Why? Follows conventional thinking for class names.
Why? Classes can be instantiated and construct an instance. By convention, upper camel case indicates a
constructable asset.

Back to top

{@a 03-02}

Do declare variables with `const` if their values should not change during the application lifetime.
Why? Conveys to readers that the value is invariant.
Why? TypeScript helps enforce that intent by requiring immediate initialization and by preventing
subsequent re-assignment.
Consider spelling `const` variables in lower camel case.
Why? Lower camel case variable names (`heroRoutes`) are easier to read and understand than the
traditional UPPER_SNAKE_CASE names (`HERO_ROUTES`).
Why? The tradition of naming constants in UPPER_SNAKE_CASE reflects an era before the modern IDEs
that quickly reveal the `const` declaration. TypeScript prevents accidental reassignment.
Do tolerate _existing_ `const` variables that are spelled in UPPER_SNAKE_CASE.
Why? The tradition of UPPER_SNAKE_CASE remains popular and pervasive, especially in third party
modules. It is rarely worth the effort to change them at the risk of breaking existing code and documentation.

Back to top

{@a 03-03}

Coding conventions

Classes

Style 03-01

Constants

Style 03-02

Do name an interface using upper camel case.
Consider naming an interface without an `I` prefix.
Consider using a class instead of an interface.
Why? TypeScript guidelines discourage the `I` prefix.
Why? A class alone is less code than a _class-plus-interface_.
Why? A class can act as an interface (use `implements` instead of `extends`).
Why? An interface-class can be a provider lookup token in Angular dependency injection.

Back to top

{@a 03-04}

Do use lower camel case to name properties and methods.
Avoid prefixing private properties and methods with an underscore.
Why? Follows conventional thinking for properties and methods.
Why? JavaScript lacks a true private property or method.
Why? TypeScript tooling makes it easy to identify private vs. public properties and methods.

Back to top

{@a 03-06}

Consider leaving one empty line between third party imports and application imports.
Consider listing import lines alphabetized by the module.
Consider listing destructured imported symbols alphabetically.
Why? The empty line separates _your_ stuff from _their_ stuff.
Why? Alphabetizing makes it easier to read and locate symbols.

Back to top

Interfaces

Style 03-03

Properties and methods

Style 03-04

Import line spacing

Style 03-06

Have a near-term view of implementation and a long-term vision. Start small but keep in mind where the app is
heading down the road.

All of the app's code goes in a folder named src . All feature areas are in their own folder, with their own
NgModule.

All content is one asset per file. Each component, service, and pipe is in its own file. All third party vendor
scripts are stored in another folder and not in the src folder. You didn't write them and you don't want them
cluttering src . Use the naming conventions for files in this guide. Back to top

{@a 04-01}

Do structure the app such that you can **L**ocate code quickly, **I**dentify the code at a glance, keep the
Flattest structure you can, and **T**ry to be DRY.
Do define the structure to follow these four basic guidelines, listed in order of importance.
Why? LIFT Provides a consistent structure that scales well, is modular, and makes it easier to increase
developer efficiency by finding code quickly. To confirm your intuition about a particular structure, ask: _can I
quickly open and start work in all of the related files for this feature_?

Back to top

{@a 04-02}

Do make locating code intuitive, simple and fast.
Why? To work efficiently you must be able to find files quickly, especially when you do not know (or do not
remember) the file _names_. Keeping related files near each other in an intuitive location saves time. A
descriptive folder structure makes a world of difference to you and the people who come after you.

Back to top

{@a 04-03}

Application structure and NgModules

LIFT

Style 04-01

Locate

Style 04-02

Do name the file such that you instantly know what it contains and represents.
Do be descriptive with file names and keep the contents of the file to exactly one component.
Avoid files with multiple components, multiple services, or a mixture.
Why? Spend less time hunting and pecking for code, and become more efficient. Longer file names are far
better than _short-but-obscure_ abbreviated names.
It may be advantageous to deviate from the _one-thing-per-file_ rule when you have a set of small, closely-
related features that are better discovered and understood in a single file than as multiple files. Be wary of this
loophole.

Back to top

{@a 04-04}

Do keep a flat folder structure as long as possible.
Consider creating sub-folders when a folder reaches seven or more files.
Consider configuring the IDE to hide distracting, irrelevant files such as generated `.js` and `.js.map` files.
Why? No one wants to search for a file through seven levels of folders. A flat structure is easy to scan. On
the other hand, psychologists believe that humans start to struggle when the number of adjacent interesting
things exceeds nine. So when a folder has ten or more files, it may be time to create subfolders. Base your
decision on your comfort level. Use a flatter structure until there is an obvious value to creating a new folder.

Back to top

{@a 04-05}

Do be DRY (Don't Repeat Yourself).
Avoid being so DRY that you sacrifice readability.
Why? Being DRY is important, but not crucial if it sacrifices the other elements of LIFT. That's why it's called
T-DRY. For example, it's redundant to name a template `hero-view.component.html` because with the `.html`

Identify

Style 04-03

Flat

Style 04-04

T-DRY (Try to be DRY)

Style 04-05

extension, it is obviously a view. But if something is not obvious or departs from a convention, then spell it out.

Back to top

{@a 04-06}

Do start small but keep in mind where the app is heading down the road.
Do have a near term view of implementation and a long term vision.
Do put all of the app's code in a folder named `src`.
Consider creating a folder for a component when it has multiple accompanying files (`.ts`, `.html`, `.css` and
`.spec`).
Why? Helps keep the app structure small and easy to maintain in the early stages, while being easy to
evolve as the app grows.
Why? Components often have four files (e.g. `*.html`, `*.css`, `*.ts`, and `*.spec.ts`) and can clutter a folder
quickly.

{@a file-tree}

Here is a compliant folder and file structure:

<project root>
src
app
core
core.module.ts
exception.service.ts|spec.ts
user-profile.service.ts|spec.ts
heroes
hero
hero.component.ts|html|css|spec.ts
hero-list
hero-list.component.ts|html|css|spec.ts
shared
hero-button.component.ts|html|css|spec.ts
hero.model.ts
hero.service.ts|spec.ts
heroes.component.ts|html|css|spec.ts

Overall structural guidelines

Style 04-06

heroes.module.ts
heroes-routing.module.ts
shared
shared.module.ts
init-caps.pipe.ts|spec.ts
text-filter.component.ts|spec.ts
text-filter.service.ts|spec.ts
villains
villain
...
villain-list
...
shared
...
villains.component.ts|html|css|spec.ts
villains.module.ts
villains-routing.module.ts
app.component.ts|html|css|spec.ts
app.module.ts
app-routing.module.ts
main.ts
index.html
...
node_modules/...
...
While components in dedicated folders are widely preferred, another option for small apps is to keep
components flat (not in a dedicated folder). This adds up to four files to the existing folder, but also reduces the
folder nesting. Whatever you choose, be consistent.

Back to top

{@a 04-07}

Do create folders named for the feature area they represent.
Why? A developer can locate the code and identify what each file represents at a glance. The structure is
as flat as it can be and there are no repetitive or redundant names.

Folders-by-feature structure

Style 04-07

Why? The LIFT guidelines are all covered.
Why? Helps reduce the app from becoming cluttered through organizing the content and keeping them
aligned with the LIFT guidelines.
Why? When there are a lot of files, for example 10+, locating them is easier with a consistent folder
structure and more difficult in a flat structure.
Do create an NgModule for each feature area.
Why? NgModules make it easy to lazy load routable features.
Why? NgModules make it easier to isolate, test, and re-use features.
Refer to this _folder and file structure_ example.

Back to top

{@a 04-08}

Do create an NgModule in the app's root folder, for example, in `/src/app`.
Why? Every app requires at least one root NgModule.
Consider naming the root module `app.module.ts`.
Why? Makes it easier to locate and identify the root module.

Back to top

{@a 04-09}

Do create an NgModule for all distinct features in an application; for example, a `Heroes` feature.
Do place the feature module in the same named folder as the feature area; for example, in `app/heroes`.
Do name the feature module file reflecting the name of the feature area and folder; for example,
`app/heroes/heroes.module.ts`.
Do name the feature module symbol reflecting the name of the feature area, folder, and file; for example,
`app/heroes/heroes.module.ts` defines `HeroesModule`.
Why? A feature module can expose or hide its implementation from other modules.
Why? A feature module identifies distinct sets of related components that comprise the feature area.
Why? A feature module can easily be routed to both eagerly and lazily.
Why? A feature module defines clear boundaries between specific functionality and other application

App root module

Style 04-08

Feature modules

Style 04-09

features.
Why? A feature module helps clarify and make it easier to assign development responsibilities to different
teams.
Why? A feature module can easily be isolated for testing.

Back to top

{@a 04-10}

Do create a feature module named `SharedModule` in a `shared` folder; for example,
`app/shared/shared.module.ts` defines `SharedModule`.
Do declare components, directives, and pipes in a shared module when those items will be re-used and
referenced by the components declared in other feature modules.
Consider using the name SharedModule when the contents of a shared module are referenced across the
entire application.
Avoid providing services in shared modules. Services are usually singletons that are provided once for the
entire application or in a particular feature module.
Do import all modules required by the assets in the `SharedModule`; for example, `CommonModule` and
`FormsModule`.
Why? `SharedModule` will contain components, directives and pipes that may need features from another
common module; for example, `ngFor` in `CommonModule`.
Do declare all components, directives, and pipes in the `SharedModule`.
Do export all symbols from the `SharedModule` that other feature modules need to use.
Why? `SharedModule` exists to make commonly used components, directives and pipes available for use
in the templates of components in many other modules.
Avoid specifying app-wide singleton providers in a `SharedModule`. Intentional singletons are OK. Take
care.
Why? A lazy loaded feature module that imports that shared module will make its own copy of the service
and likely have undesirable results.
Why? You don't want each module to have its own separate instance of singleton services. Yet there is a
real danger of that happening if the `SharedModule` provides a service.
src
app
shared
shared.module.ts
init-caps.pipe.ts|spec.ts

Shared feature module

Style 04-10

text-filter.component.ts|spec.ts
text-filter.service.ts|spec.ts
app.component.ts|html|css|spec.ts
app.module.ts
app-routing.module.ts
main.ts
index.html
...

Back to top

{@a 04-11}

Consider collecting numerous, auxiliary, single-use classes inside a core module to simplify the apparent
structure of a feature module.
Consider calling the application-wide core module, `CoreModule`. Importing `CoreModule` into the root
`AppModule` reduces its complexity and emphasizes its role as orchestrator of the application as a whole.
Do create a feature module named `CoreModule` in a `core` folder (e.g. `app/core/core.module.ts` defines
`CoreModule`).
Do put a singleton service whose instance will be shared throughout the application in the `CoreModule`
(e.g. `ExceptionService` and `LoggerService`).
Do import all modules required by the assets in the `CoreModule` (e.g. `CommonModule` and
`FormsModule`).
Why? `CoreModule` provides one or more singleton services. Angular registers the providers with the app
root injector, making a singleton instance of each service available to any component that needs them, whether
that component is eagerly or lazily loaded.
Why? `CoreModule` will contain singleton services. When a lazy loaded module imports these, it will get a
new instance and not the intended app-wide singleton.
Do gather application-wide, single use components in the `CoreModule`. Import it once (in the
`AppModule`) when the app starts and never import it anywhere else. (e.g. `NavComponent` and
`SpinnerComponent`).
Why? Real world apps can have several single-use components (e.g., spinners, message toasts, and
modal dialogs) that appear only in the `AppComponent` template. They are not imported elsewhere so they're
not shared in that sense. Yet they're too big and messy to leave loose in the root folder.
Avoid importing the `CoreModule` anywhere except in the `AppModule`.
Why? A lazily loaded feature module that directly imports the `CoreModule` will make its own copy of

Core feature module

Style 04-11

services and likely have undesirable results.
Why? An eagerly loaded feature module already has access to the `AppModule`'s injector, and thus the
`CoreModule`'s services.
Do export all symbols from the `CoreModule` that the `AppModule` will import and make available for other
feature modules to use.
Why? `CoreModule` exists to make commonly used singleton services available for use in the many other
modules.
Why? You want the entire app to use the one, singleton instance. You don't want each module to have its
own separate instance of singleton services. Yet there is a real danger of that happening accidentally if the
`CoreModule` provides a service.
src
app
core
core.module.ts
logger.service.ts|spec.ts
nav
nav.component.ts|html|css|spec.ts
spinner
spinner.component.ts|html|css|spec.ts
spinner.service.ts|spec.ts
app.component.ts|html|css|spec.ts
app.module.ts
app-routing.module.ts
main.ts
index.html
...

`AppModule` is a little smaller because many app/root classes have moved to other modules. `AppModule` is
stable because you will add future components and providers to other modules, not this one. `AppModule`
delegates to imported modules rather than doing work. `AppModule` is focused on its main task, orchestrating
the app as a whole.

Back to top

{@a 04-12}

Prevent re-import of the core module

Style 04-12

Only the root AppModule should import the CoreModule .

Do guard against reimporting of `CoreModule` and fail fast by adding guard logic.
Why? Guards against reimporting of the `CoreModule`.
Why? Guards against creating multiple instances of assets intended to be singletons.

Back to top

{@a 04-13}

A distinct application feature or workflow may be lazy loaded or loaded on demand rather than when the
application starts.

Do put the contents of lazy loaded features in a *lazy loaded folder*. A typical *lazy loaded folder* contains
a *routing component*, its child components, and their related assets and modules.
Why? The folder makes it easy to identify and isolate the feature content.

Back to top

{@a 04-14}

Avoid allowing modules in sibling and parent folders to directly import a module in a *lazy loaded feature*.
Why? Directly importing and using a module will load it immediately when the intention is to load it on
demand.

Back to top

{@a 05-02}

Lazy Loaded folders

Style 04-13

Never directly import lazy loaded folders

Style 04-14

Components

Component selector names

Do use _dashed-case_ or _kebab-case_ for naming the element selectors of components.
Why? Keeps the element names consistent with the specification for [Custom Elements]
(https://www.w3.org/TR/custom-elements/).

Back to top

{@a 05-03}

Do give components an _element_ selector, as opposed to _attribute_ or _class_ selectors.
Why? components have templates containing HTML and optional Angular template syntax. They display
content. Developers place components on the page as they would native HTML elements and web
components.
Why? It is easier to recognize that a symbol is a component by looking at the template's html.

Back to top

{@a 05-04}

Do extract templates and styles into a separate file, when more than 3 lines.
Do name the template file `[component-name].component.html`, where [component-name] is the
component name.
Do name the style file `[component-name].component.css`, where [component-name] is the component
name.
Do specify _component-relative_ URLs, prefixed with `./`.
Why? Large, inline templates and styles obscure the component's purpose and implementation, reducing
readability and maintainability.
Why? In most editors, syntax hints and code snippets aren't available when developing inline templates and
styles. The Angular TypeScript Language Service (forthcoming) promises to overcome this deficiency for HTML
templates in those editors that support it; it won't help with CSS styles.
Why? A _component relative_ URL requires no change when you move the component files, as long as the
files stay together.

Style 05-02

Components as elements

Style 05-03

Extract templates and styles to their own files

Style 05-04

Why? The `./` prefix is standard syntax for relative URLs; don't depend on Angular's current ability to do
without that prefix.

Back to top

{@a 05-12}

Do use the `@Input()` and `@Output()` class decorators instead of the `inputs` and `outputs` properties of
the `@Directive` and `@Component` metadata:
Consider placing `@Input()` or `@Output()` on the same line as the property it decorates.
Why? It is easier and more readable to identify which properties in a class are inputs or outputs.
Why? If you ever need to rename the property or event name associated with `@Input` or `@Output`, you
can modify it in a single place.
Why? The metadata declaration attached to the directive is shorter and thus more readable.
Why? Placing the decorator on the same line _usually_ makes for shorter code and still easily identifies the
property as an input or output. Put it on the line above when doing so is clearly more readable.

Back to top

{@a 05-13}

Avoid _input_ and _output_ aliases except when it serves an important purpose.
Why? Two names for the same property (one private, one public) is inherently confusing.
Why? You should use an alias when the directive name is also an _input_ property, and the directive name
doesn't describe the property.

Back to top

{@a 05-14}

Decorate input and output properties

Style 05-12

Avoid aliasing inputs and outputs

Style 05-13

Member sequence

Style 05-14

Do place properties up top followed by methods.
Do place private members after public members, alphabetized.
Why? Placing members in a consistent sequence makes it easy to read and helps instantly identify which
members of the component serve which purpose.

Back to top

{@a 05-15}

Do limit logic in a component to only that required for the view. All other logic should be delegated to
services.
Do move reusable logic to services and keep components simple and focused on their intended purpose.
Why? Logic may be reused by multiple components when placed within a service and exposed via a
function.
Why? Logic in a service can more easily be isolated in a unit test, while the calling logic in the component
can be easily mocked.
Why? Removes dependencies and hides implementation details from the component.
Why? Keeps the component slim, trim, and focused.

Back to top

{@a 05-16}

Do name events without the prefix `on`.
Do name event handler methods with the prefix `on` followed by the event name.
Why? This is consistent with built-in events such as button clicks.
Why? Angular allows for an [alternative syntax](guide/template-syntax#binding-syntax) `on-*`. If the event
itself was prefixed with `on` this would result in an `on-onEvent` binding expression.

Back to top

{@a 05-17}

Delegate complex component logic to services

Style 05-15

Don't prefix output properties

Style 05-16

Do put presentation logic in the component class, and not in the template.
Why? Logic will be contained in one place (the component class) instead of being spread in two places.
Why? Keeping the component's presentation logic in the class instead of the template improves testability,
maintainability, and reusability.

Back to top

{@a 06-01}

Do use attribute directives when you have presentation logic without a template.
Why? Attribute directives don't have an associated template.
Why? An element may have more than one attribute directive applied.

Back to top

{@a 06-03}

Consider preferring the `@HostListener` and `@HostBinding` to the `host` property of the `@Directive` and
`@Component` decorators.
Do be consistent in your choice.
Why? The property associated with `@HostBinding` or the method associated with `@HostListener` can be
modified only in a single place—in the directive's class. If you use the `host` metadata property, you must
modify both the property/method declaration in the directive's class and the metadata in the decorator
associated with the directive.

Compare with the less preferred host metadata alternative.

Put presentation logic in the component class

Style 05-17

Directives

Use directives to enhance an element

Style 06-01

HostListener/HostBinding decorators versus host metadata

Style 06-03

Why? The `host` metadata is only one term to remember and doesn't require extra ES imports.

Back to top

{@a 07-01}

Do use services as singletons within the same injector. Use them for sharing data and functionality.
Why? Services are ideal for sharing methods across a feature area or an app.
Why? Services are ideal for sharing stateful in-memory data.

Back to top

{@a 07-02}

Do create services with a single responsibility that is encapsulated by its context.
Do create a new service once the service begins to exceed that singular purpose.
Why? When a service has multiple responsibilities, it becomes difficult to test.
Why? When a service has multiple responsibilities, every component or service that injects it now carries
the weight of them all.

Back to top

{@a 07-03}

Do provide services to the Angular injector at the top-most component where they will be shared.
Why? The Angular injector is hierarchical.
Why? When providing the service to a top level component, that instance is shared and available to all child

Services

Services are singletons

Style 07-01

Single responsibility

Style 07-02

Providing a service

Style 07-03

components of that top level component.
Why? This is ideal when a service is sharing methods or state.
Why? This is not ideal when two different components need different instances of a service. In this scenario
it would be better to provide the service at the component level that needs the new and separate instance.

Back to top

{@a 07-04}

Do use the `@Injectable()` class decorator instead of the `@Inject` parameter decorator when using types
as tokens for the dependencies of a service.
Why? The Angular Dependency Injection (DI) mechanism resolves a service's own dependencies based on
the declared types of that service's constructor parameters.
Why? When a service accepts only dependencies associated with type tokens, the `@Injectable()` syntax is
much less verbose compared to using `@Inject()` on each individual constructor parameter.

Back to top

{@a 08-01}

Do refactor logic for making data operations and interacting with data to a service.
Do make data services responsible for XHR calls, local storage, stashing in memory, or any other data
operations.
Why? The component's responsibility is for the presentation and gathering of information for the view. It
should not care how it gets the data, just that it knows who to ask for it. Separating the data services moves the
logic on how to get it to the data service, and lets the component be simpler and more focused on the view.
Why? This makes it easier to test (mock or real) the data calls when testing a component that uses a data
service.
Why? The details of data management, such as headers, HTTP methods, caching, error handling, and retry
logic, are irrelevant to components and other data consumers. A data service encapsulates these details. It's

Use the @Injectable() class decorator

Style 07-04

Data Services

Talk to the server through a service

Style 08-01

easier to evolve these details inside the service without affecting its consumers. And it's easier to test the
consumers with mock service implementations.

Back to top

Use Lifecycle hooks to tap into important events exposed by Angular.

Back to top

{@a 09-01}

Do implement the lifecycle hook interfaces.
Why? Lifecycle interfaces prescribe typed method signatures. use those signatures to flag spelling and
syntax mistakes.

Back to top

Useful tools and tips for Angular.

Back to top

{@a A-01}

Do use [codelyzer](https://www.npmjs.com/package/codelyzer) to follow this guide.
Consider adjusting the rules in codelyzer to suit your needs.

Back to top

{@a A-02}

Lifecycle hooks

Implement lifecycle hook interfaces

Style 09-01

Appendix

Codelyzer

Style A-01

Do use file templates or snippets to help follow consistent styles and patterns. Here are templates and/or
snippets for some of the web development editors and IDEs.
Consider using [snippets](https://marketplace.visualstudio.com/items?itemName=johnpapa.Angular2) for

[Visual Studio Code](https://code.visualstudio.com/) that follow these styles and guidelines.
Consider using [snippets](https://atom.io/packages/angular-2-typescript-snippets) for [Atom]
(https://atom.io/) that follow these styles and guidelines. **Consider** using [snippets]
(https://github.com/orizens/sublime-angular2-snippets) for [Sublime Text](http://www.sublimetext.com/) that
follow these styles and guidelines. **Consider** using [snippets](https://github.com/mhartington/vim-angular2-
snippets) for [Vim](http://www.vim.org/) that follow these styles and guidelines.

Back to top

File templates and snippets

Style A-02

The Angular application manages what the user sees and can do, achieving this through the interaction of a
component class instance (the component) and its user-facing template.

You may be familiar with the component/template duality from your experience with model-view-controller
(MVC) or model-view-viewmodel (MVVM). In Angular, the component plays the part of the
controller/viewmodel, and the template represents the view.

This page is a comprehensive technical reference to the Angular template language. It explains basic principles
of the template language and describes most of the syntax that you'll encounter elsewhere in the
documentation.

Many code snippets illustrate the points and concepts, all of them available in the .

{@a html}

HTML is the language of the Angular template. Almost all HTML syntax is valid template syntax. The
<script> element is a notable exception; it is forbidden, eliminating the risk of script injection attacks. In

practice, <script> is ignored and a warning appears in the browser console. See the Security page for
details.

Some legal HTML doesn't make much sense in a template. The <html> , <body> , and <base>

elements have no useful role. Pretty much everything else is fair game.

You can extend the HTML vocabulary of your templates with components and directives that appear as new
elements and attributes. In the following sections, you'll learn how to get and set DOM (Document Object
Model) values dynamically through data binding.

Begin with the first form of data binding—interpolation—to see how much richer template HTML can be.

{@a interpolation}

Template Syntax

HTML in templates

Interpolation ({{...}})

You met the double-curly braces of interpolation, {{ and }} , early in your Angular education.

You use interpolation to weave calculated strings into the text between HTML element tags and within attribute
assignments.

The text between the braces is often the name of a component property. Angular replaces that name with the
string value of the corresponding component property. In the example above, Angular evaluates the title

and heroImageUrl properties and "fills in the blanks", first displaying a bold application title and then a
heroic image.

More generally, the text between the braces is a template expression that Angular first evaluates and then
converts to a string. The following interpolation illustrates the point by adding the two numbers:

The expression can invoke methods of the host component such as getVal() , seen here:

Angular evaluates all expressions in double curly braces, converts the expression results to strings, and links
them with neighboring literal strings. Finally, it assigns this composite interpolated result to an element or
directive property.

You appear to be inserting the result between element tags and assigning it to attributes. It's convenient to
think so, and you rarely suffer for this mistake. Though this is not exactly true. Interpolation is a special syntax
that Angular converts into a property binding, as is explained below.

But first, let's take a closer look at template expressions and statements.

{@a template-expressions}

A template expression produces a value. Angular executes the expression and assigns it to a property of a
binding target; the target might be an HTML element, a component, or a directive.

The interpolation braces in {{1 + 1}} surround the template expression 1 + 1 . In the property binding
section below, a template expression appears in quotes to the right of the = symbol as in
[property]="expression" .

You write these template expressions in a language that looks like JavaScript. Many JavaScript expressions
are legal template expressions, but not all.

JavaScript expressions that have or promote side effects are prohibited, including:

Template expressions

assignments (= , += , -= , ...)
new

chaining expressions with ; or ,

increment and decrement operators (++ and --)

Other notable differences from JavaScript syntax include:

no support for the bitwise operators | and &

new template expression operators, such as | , ?. and ! .

{@a expression-context}

The expression context is typically the component instance. In the following snippets, the title within
double-curly braces and the isUnchanged in quotes refer to properties of the AppComponent .

An expression may also refer to properties of the template's context such as a template input variable
(let hero) or a template reference variable (#heroInput).

The context for terms in an expression is a blend of the template variables, the directive's context object (if it
has one), and the component's members. If you reference a name that belongs to more than one of these
namespaces, the template variable name takes precedence, followed by a name in the directive's context, and,
lastly, the component's member names.

The previous example presents such a name collision. The component has a hero property and the
*ngFor defines a hero template variable. The hero in {{hero.name}} refers to the template

input variable, not the component's property.

Template expressions cannot refer to anything in the global namespace (except undefined). They can't
refer to window or document . They can't call console.log or Math.max . They are restricted to
referencing members of the expression context.

{@a no-side-effects}

{@a expression-guidelines}

Template expressions can make or break an application. Please follow these guidelines:

No visible side effects

Expression context

Expression guidelines

Quick execution
Simplicity
Idempotence

The only exceptions to these guidelines should be in specific circumstances that you thoroughly understand.

A template expression should not change any application state other than the value of the target property.

This rule is essential to Angular's "unidirectional data flow" policy. You should never worry that reading a
component value might change some other displayed value. The view should be stable throughout a single
rendering pass.

Angular executes template expressions after every change detection cycle. Change detection cycles are
triggered by many asynchronous activities such as promise resolutions, http results, timer events, keypresses
and mouse moves.

Expressions should finish quickly or the user experience may drag, especially on slower devices. Consider
caching values when their computation is expensive.

Although it's possible to write quite complex template expressions, you should avoid them.

A property name or method call should be the norm. An occasional Boolean negation (!) is OK. Otherwise,
confine application and business logic to the component itself, where it will be easier to develop and test.

An idempotent expression is ideal because it is free of side effects and improves Angular's change detection
performance.

In Angular terms, an idempotent expression always returns exactly the same thing until one of its dependent
values changes.

Dependent values should not change during a single turn of the event loop. If an idempotent expression returns
a string or a number, it returns the same string or number when called twice in a row. If the expression returns
an object (including an array), it returns the same object reference when called twice in a row.

No visible side effects

Quick execution

Simplicity

Idempotence

{@a template-statements}

A template statement responds to an event raised by a binding target such as an element, component, or
directive. You'll see template statements in the event binding section, appearing in quotes to the right of the
= symbol as in (event)="statement" .

A template statement has a side effect. That's the whole point of an event. It's how you update application state
from user action.

Responding to events is the other side of Angular's "unidirectional data flow". You're free to change anything,
anywhere, during this turn of the event loop.

Like template expressions, template statements use a language that looks like JavaScript. The template
statement parser differs from the template expression parser and specifically supports both basic assignment
(=) and chaining expressions (with ; or ,).

However, certain JavaScript syntax is not allowed:

new

increment and decrement operators, ++ and --

operator assignment, such as += and -=

the bitwise operators | and &

the template expression operators

As with expressions, statements can refer only to what's in the statement context such as an event handling
method of the component instance.

The statement context is typically the component instance. The deleteHero in (click)="deleteHero()"

is a method of the data-bound component.

The statement context may also refer to properties of the template's own context. In the following examples,
the template $event object, a template input variable (let hero), and a template reference variable
(#heroForm) are passed to an event handling method of the component.

Template context names take precedence over component context names. In deleteHero(hero) above,
the hero is the template input variable, not the component's hero property.

Template statements

Statement context

Template statements cannot refer to anything in the global namespace. They can't refer to window or
document . They can't call console.log or Math.max .

As with expressions, avoid writing complex template statements. A method call or simple property assignment
should be the norm.

Now that you have a feel for template expressions and statements, you're ready to learn about the varieties of
data binding syntax beyond interpolation.

{@a binding-syntax}

Data binding is a mechanism for coordinating what users see, with application data values. While you could
push values to and pull values from HTML, the application is easier to write, read, and maintain if you turn
these chores over to a binding framework. You simply declare bindings between binding sources and target
HTML elements and let the framework do the work.

Angular provides many kinds of data binding. This guide covers most of them, after a high-level view of Angular
data binding and its syntax.

Binding types can be grouped into three categories distinguished by the direction of data flow: from the source-
to-view, from view-to-source, and in the two-way sequence: view-to-source-to-view:

Data direction Syntax Type

One-way
from data source
to view target

{{expression}} [target]="expression" bind-
target="expression"

Interpolation
Property
Attribute
Class
Style

One-way
from view target
to data source

(target)="statement" on-target="statement" Event

Two-way [(target)]="expression" bindon-target="expression" Two-way

Statement guidelines

Binding syntax: An overview

Binding types other than interpolation have a target name to the left of the equal sign, either surrounded by
punctuation ([] , ()) or preceded by a prefix (bind- , on- , bindon-).

The target name is the name of a property. It may look like the name of an attribute but it never is. To
appreciate the difference, you must develop a new way to think about template HTML.

With all the power of data binding and the ability to extend the HTML vocabulary with custom markup, it is
tempting to think of template HTML as HTML Plus.

It really is HTML Plus. But it's also significantly different than the HTML you're used to. It requires a new mental
model.

In the normal course of HTML development, you create a visual structure with HTML elements, and you modify
those elements by setting element attributes with string constants.

You still create a structure and initialize attribute values this way in Angular templates.

Then you learn to create new elements with components that encapsulate HTML and drop them into templates
as if they were native HTML elements.

That's HTML Plus.

Then you learn about data binding. The first binding you meet might look like this:

You'll get to that peculiar bracket notation in a moment. Looking beyond it, your intuition suggests that you're
binding to the button's disabled attribute and setting it to the current value of the component's
isUnchanged property.

Your intuition is incorrect! Your everyday HTML mental model is misleading. In fact, once you start data binding,
you are no longer working with HTML attributes. You aren't setting attributes. You are setting the properties of
DOM elements, components, and directives.

HTML attribute vs. DOM property The distinction between an HTML attribute and a DOM property is crucial
to understanding how Angular binding works. **Attributes are defined by HTML. Properties are defined by the
DOM (Document Object Model).** * A few HTML attributes have 1:1 mapping to properties. `id` is one example.
* Some HTML attributes don't have corresponding properties. `colspan` is one example. * Some DOM
properties don't have corresponding attributes. `textContent` is one example. * Many HTML attributes appear to
map to properties ... but not in the way you might think! That last category is confusing until you grasp this
general rule: **Attributes *initialize* DOM properties and then they are done. Property values can change;
attribute values can't.** For example, when the browser renders ` Bob `, it creates a

A new mental model

corresponding DOM node with a `value` property *initialized* to "Bob". When the user enters "Sally" into the
input box, the DOM element `value` *property* becomes "Sally". But the HTML `value` *attribute* remains
unchanged as you discover if you ask the input element about that attribute: `input.getAttribute('value')` returns
"Bob". The HTML attribute `value` specifies the *initial* value; the DOM `value` property is the *current* value.
The `disabled` attribute is another peculiar example. A button's `disabled` *property* is `false` by default so the
button is enabled. When you add the `disabled` *attribute*, its presence alone initializes the button's `disabled`
property to `true` so the button is disabled. Adding and removing the `disabled` *attribute* disables and
enables the button. The value of the *attribute* is irrelevant, which is why you cannot enable a button by writing
` Still Disabled `. Setting the button's `disabled` *property* (say, with an Angular binding) disables or enables
the button. The value of the *property* matters. **The HTML attribute and the DOM property are not the same
thing, even when they have the same name.**

This fact bears repeating: Template binding works with properties and events, not attributes.

A world without attributes
In the world of Angular, the only role of attributes is to initialize element and directive state. When you write a
data binding, you're dealing exclusively with properties and events of the target object. HTML attributes
effectively disappear.

With this model firmly in mind, read on to learn about binding targets.

The target of a data binding is something in the DOM. Depending on the binding type, the target can be an
(element | component | directive) property, an (element | component | directive) event, or (rarely) an attribute
name. The following table summarizes:

Binding targets

Type Target Examples

Property Element property
Component property
Directive property

Event Element event
Component event
Directive event

Two-
way

Event and property

Attribute Attribute
(the exception)

Class class property

Style style property

With this broad view in mind, you're ready to look at binding types in detail.

{@a property-binding}

Write a template property binding to set a property of a view element. The binding sets the property to the
value of a template expression.

The most common property binding sets an element property to a component property value. An example is
binding the src property of an image element to a component's heroImageUrl property:

Another example is disabling a button when the component says that it isUnchanged :

Another is setting a property of a directive:

Yet another is setting the model property of a custom component (a great way for parent and child components
to communicate):

Property binding ([property])

One-way in

People often describe property binding as one-way data binding because it flows a value in one direction, from
a component's data property into a target element property.

You cannot use property binding to pull values out of the target element. You can't bind to a property of the
target element to read it. You can only set it.

Similarly, you cannot use property binding to *call* a method on the target element. If the element raises
events, you can listen to them with an [event binding](guide/template-syntax#event-binding). If you must read a
target element property or call one of its methods, you'll need a different technique. See the API reference for
[ViewChild](api/core/ViewChild) and [ContentChild](api/core/ContentChild).

An element property between enclosing square brackets identifies the target property. The target property in
the following code is the image element's src property.

Some people prefer the bind- prefix alternative, known as the canonical form:

The target name is always the name of a property, even when it appears to be the name of something else.
You see src and may think it's the name of an attribute. No. It's the name of an image element property.

Element properties may be the more common targets, but Angular looks first to see if the name is a property of
a known directive, as it is in the following example:

Technically, Angular is matching the name to a directive [input](guide/template-syntax#inputs-outputs), one of
the property names listed in the directive's `inputs` array or a property decorated with `@Input()`. Such inputs
map to the directive's own properties.

If the name fails to match a property of a known directive or element, Angular reports an “unknown directive”
error.

As mentioned previously, evaluation of a template expression should have no visible side effects. The
expression language itself does its part to keep you safe. You can't assign a value to anything in a property
binding expression nor use the increment and decrement operators.

Of course, the expression might invoke a property or method that has side effects. Angular has no way of
knowing that or stopping you.

The expression could call something like getFoo() . Only you know what getFoo() does. If
getFoo() changes something and you happen to be binding to that something, you risk an unpleasant

Binding target

Avoid side effects

experience. Angular may or may not display the changed value. Angular may detect the change and throw a
warning error. In general, stick to data properties and to methods that return values and do no more.

The template expression should evaluate to the type of value expected by the target property. Return a string if
the target property expects a string. Return a number if the target property expects a number. Return an object
if the target property expects an object.

The hero property of the HeroDetail component expects a Hero object, which is exactly what you're
sending in the property binding:

The brackets tell Angular to evaluate the template expression. If you omit the brackets, Angular treats the string
as a constant and initializes the target property with that string. It does not evaluate the string!

Don't make the following mistake:

{@a one-time-initialization}

You should omit the brackets when all of the following are true:

The target property accepts a string value.
The string is a fixed value that you can bake into the template.
This initial value never changes.

You routinely initialize attributes this way in standard HTML, and it works just as well for directive and
component property initialization. The following example initializes the prefix property of the
HeroDetailComponent to a fixed string, not a template expression. Angular sets it and forgets about it.

The [hero] binding, on the other hand, remains a live binding to the component's currentHero

property.

{@a property-binding-or-interpolation}

You often have a choice between interpolation and property binding. The following binding pairs do the same
thing:

Return the proper type

Remember the brackets

One-time string initialization

Property binding or interpolation?

Interpolation is a convenient alternative to property binding in many cases.

When rendering data values as strings, there is no technical reason to prefer one form to the other. You lean
toward readability, which tends to favor interpolation. You suggest establishing coding style rules and choosing
the form that both conforms to the rules and feels most natural for the task at hand.

When setting an element property to a non-string data value, you must use property binding.

Imagine the following malicious content.

Fortunately, Angular data binding is on alert for dangerous HTML. It sanitizes the values before displaying
them. It will not allow HTML with script tags to leak into the browser, neither with interpolation nor property
binding.

Interpolation handles the script tags differently than property binding but both approaches render the content
harmlessly.

{@a other-bindings}

The template syntax provides specialized one-way bindings for scenarios less well suited to property binding.

You can set the value of an attribute directly with an attribute binding.

This is the only exception to the rule that a binding sets a target property. This is the only binding that creates
and sets an attribute.

This guide stresses repeatedly that setting an element property with a property binding is always preferred to
setting the attribute with a string. Why does Angular offer attribute binding?

You must use attribute binding when there is no element property to bind.

Consider the ARIA, SVG, and table span attributes. They are pure attributes. They do not correspond to

Content security

Attribute, class, and style bindings

Attribute binding

element properties, and they do not set element properties. There are no property targets to bind to.

This fact becomes painfully obvious when you write something like this.

<tr><td colspan="{{1 + 1}}">Three-Four</td></tr>

And you get this error:

Template parse errors: Can't bind to 'colspan' since it isn't a known native property

As the message says, the <td> element does not have a colspan property. It has the "colspan"
attribute, but interpolation and property binding can set only properties, not attributes.

You need attribute bindings to create and bind to such attributes.

Attribute binding syntax resembles property binding. Instead of an element property between brackets, start
with the prefix attr , followed by a dot (.) and the name of the attribute. You then set the attribute value,
using an expression that resolves to a string.

Bind [attr.colspan] to a calculated value:

Here's how the table renders:

One-Two

Five Six

One of the primary use cases for attribute binding is to set ARIA attributes, as in this example:

You can add and remove CSS class names from an element's class attribute with a class binding.

Class binding syntax resembles property binding. Instead of an element property between brackets, start with
the prefix class , optionally followed by a dot (.) and the name of a CSS class:
[class.class-name] .

The following examples show how to add and remove the application's "special" class with class bindings.
Here's how to set the attribute without binding:

You can replace that with a binding to a string of the desired class names; this is an all-or-nothing, replacement
binding.

Class binding

Finally, you can bind to a specific class name. Angular adds the class when the template expression evaluates
to truthy. It removes the class when the expression is falsy.

While this is a fine way to toggle a single class name, the [NgClass directive](guide/template-syntax#ngClass)
is usually preferred when managing multiple class names at the same time.

You can set inline styles with a style binding.

Style binding syntax resembles property binding. Instead of an element property between brackets, start with
the prefix style , followed by a dot (.) and the name of a CSS style property:
[style.style-property] .

Some style binding styles have a unit extension. The following example conditionally sets the font size in “em”
and “%” units .

While this is a fine way to set a single style, the [NgStyle directive](guide/template-syntax#ngStyle) is generally
preferred when setting several inline styles at the same time.
Note that a _style property_ name can be written in either [dash-case](guide/glossary#dash-case), as shown
above, or [camelCase](guide/glossary#camelcase), such as `fontSize`.

{@a event-binding}

The bindings directives you've met so far flow data in one direction: from a component to an element.

Users don't just stare at the screen. They enter text into input boxes. They pick items from lists. They click
buttons. Such user actions may result in a flow of data in the opposite direction: from an element to a
component.

The only way to know about a user action is to listen for certain events such as keystrokes, mouse movements,
clicks, and touches. You declare your interest in user actions through Angular event binding.

Event binding syntax consists of a target event name within parentheses on the left of an equal sign, and a
quoted template statement on the right. The following event binding listens for the button's click events, calling
the component's onSave() method whenever a click occurs:

Style binding

Event binding ((event))

Target event

A name between parentheses — for example, (click) — identifies the target event. In the following
example, the target is the button's click event.

Some people prefer the on- prefix alternative, known as the canonical form:

Element events may be the more common targets, but Angular looks first to see if the name matches an event
property of a known directive, as it does in the following example:

The `myClick` directive is further described in the section on [aliasing input/output properties](guide/template-
syntax#aliasing-io).

If the name fails to match an element event or an output property of a known directive, Angular reports an
“unknown directive” error.

In an event binding, Angular sets up an event handler for the target event.

When the event is raised, the handler executes the template statement. The template statement typically
involves a receiver, which performs an action in response to the event, such as storing a value from the HTML
control into a model.

The binding conveys information about the event, including data values, through an event object named
$event .

The shape of the event object is determined by the target event. If the target event is a native DOM element
event, then $event is a DOM event object, with properties such as target and target.value .

Consider this example:

This code sets the input box value property by binding to the name property. To listen for changes to the
value, the code binds to the input box's input event. When the user makes changes, the input event is
raised, and the binding executes the statement within a context that includes the DOM event object,
$event .

To update the name property, the changed text is retrieved by following the path
$event.target.value .

If the event belongs to a directive (recall that components are directives), $event has whatever shape the
directive decides to produce.

{@a eventemitter}

$event and event handling statements

{@a custom-event}

Directives typically raise custom events with an Angular EventEmitter. The directive creates an
EventEmitter and exposes it as a property. The directive calls EventEmitter.emit(payload) to

fire an event, passing in a message payload, which can be anything. Parent directives listen for the event by
binding to this property and accessing the payload through the $event object.

Consider a HeroDetailComponent that presents hero information and responds to user actions. Although
the HeroDetailComponent has a delete button it doesn't know how to delete the hero itself. The best it
can do is raise an event reporting the user's delete request.

Here are the pertinent excerpts from that HeroDetailComponent :

The component defines a deleteRequest property that returns an EventEmitter . When the user
clicks delete, the component invokes the delete() method, telling the EventEmitter to emit a Hero

object.

Now imagine a hosting parent component that binds to the HeroDetailComponent 's deleteRequest

event.

When the deleteRequest event fires, Angular calls the parent component's deleteHero method,
passing the hero-to-delete (emitted by HeroDetail) in the $event variable.

The deleteHero method has a side effect: it deletes a hero. Template statement side effects are not just
OK, but expected.

Deleting the hero updates the model, perhaps triggering other changes including queries and saves to a
remote server. These changes percolate through the system and are ultimately displayed in this and other
views.

{@a two-way}

You often want to both display a data property and update that property when the user makes changes.

Custom events with EventEmitter

Template statements have side effects

Two-way binding ([(...)])

On the element side that takes a combination of setting a specific element property and listening for an element
change event.

Angular offers a special two-way data binding syntax for this purpose, [(x)] . The [(x)] syntax
combines the brackets of property binding, [x] , with the parentheses of event binding, (x) .

[()] = banana in a box
Visualize a *banana in a box* to remember that the parentheses go _inside_ the brackets.

The [(x)] syntax is easy to demonstrate when the element has a settable property called x and a
corresponding event named xChange . Here's a SizerComponent that fits the pattern. It has a size

value property and a companion sizeChange event:

The initial size is an input value from a property binding. Clicking the buttons increases or decreases the
size , within min/max values constraints, and then raises (emits) the sizeChange event with the

adjusted size.

Here's an example in which the AppComponent.fontSizePx is two-way bound to the
SizerComponent :

The AppComponent.fontSizePx establishes the initial SizerComponent.size value. Clicking the
buttons updates the AppComponent.fontSizePx via the two-way binding. The revised
AppComponent.fontSizePx value flows through to the style binding, making the displayed text bigger or

smaller.

The two-way binding syntax is really just syntactic sugar for a property binding and an event binding. Angular
desugars the SizerComponent binding into this:

The $event variable contains the payload of the SizerComponent.sizeChange event. Angular
assigns the $event value to the AppComponent.fontSizePx when the user clicks the buttons.

Clearly the two-way binding syntax is a great convenience compared to separate property and event bindings.

It would be convenient to use two-way binding with HTML form elements like <input> and <select> .
However, no native HTML element follows the x value and xChange event pattern.

Fortunately, the Angular NgModel directive is a bridge that enables two-way binding to form elements.

{@a directives}

Built-in directives

Earlier versions of Angular included over seventy built-in directives. The community contributed many more,
and countless private directives have been created for internal applications.

You don't need many of those directives in Angular. You can often achieve the same results with the more
capable and expressive Angular binding system. Why create a directive to handle a click when you can write a
simple binding such as this?

You still benefit from directives that simplify complex tasks. Angular still ships with built-in directives; just not as
many. You'll write your own directives, just not as many.

This segment reviews some of the most frequently used built-in directives, classified as either attribute
directives or structural directives.

{@a attribute-directives}

Attribute directives listen to and modify the behavior of other HTML elements, attributes, properties, and
components. They are usually applied to elements as if they were HTML attributes, hence the name.

Many details are covered in the Attribute Directives guide. Many NgModules such as the RouterModule

and the FormsModule define their own attribute directives. This section is an introduction to the most
commonly used attribute directives:

NgClass - add and remove a set of CSS classes
NgStyle - add and remove a set of HTML styles
NgModel - two-way data binding to an HTML form element

{@a ngClass}

You typically control how elements appear by adding and removing CSS classes dynamically. You can bind to
the ngClass to add or remove several classes simultaneously.

A class binding is a good way to add or remove a single class.

To add or remove many CSS classes at the same time, the NgClass directive may be the better choice.

Try binding ngClass to a key:value control object. Each key of the object is a CSS class name; its value is

Built-in attribute directives

NgClass

true if the class should be added, false if it should be removed.

Consider a setCurrentClasses component method that sets a component property,
currentClasses with an object that adds or removes three classes based on the true / false state

of three other component properties:

Adding an ngClass property binding to currentClasses sets the element's classes accordingly:

It's up to you to call `setCurrentClasses()`, both initially and when the dependent properties change.

{@a ngStyle}

You can set inline styles dynamically, based on the state of the component. With NgStyle you can set many
inline styles simultaneously.

A style binding is an easy way to set a single style value.

To set many inline styles at the same time, the NgStyle directive may be the better choice.

Try binding ngStyle to a key:value control object. Each key of the object is a style name; its value is
whatever is appropriate for that style.

Consider a setCurrentStyles component method that sets a component property, currentStyles

with an object that defines three styles, based on the state of three other component properties:

Adding an ngStyle property binding to currentStyles sets the element's styles accordingly:

It's up to you to call `setCurrentStyles()`, both initially and when the dependent properties change.

{@a ngModel}

When developing data entry forms, you often both display a data property and update that property when the
user makes changes.

Two-way data binding with the NgModel directive makes that easy. Here's an example:

NgStyle

NgModel - Two-way binding to form elements with [(ngModel)]

FormsModule is required to use ngModel

Before using the ngModel directive in a two-way data binding, you must import the FormsModule and
add it to the NgModule's imports list. Learn more about the FormsModule and ngModel in the
Forms guide.

Here's how to import the FormsModule to make [(ngModel)] available.

Looking back at the name binding, note that you could have achieved the same result with separate bindings
to the <input> element's value property and input event.

That's cumbersome. Who can remember which element property to set and which element event emits user
changes? How do you extract the currently displayed text from the input box so you can update the data
property? Who wants to look that up each time?

That ngModel directive hides these onerous details behind its own ngModel input and
ngModelChange output properties.

The `ngModel` data property sets the element's value property and the `ngModelChange` event property
listens for changes to the element's value. The details are specific to each kind of element and therefore the
`NgModel` directive only works for an element supported by a [ControlValueAccessor]
(api/forms/ControlValueAccessor) that adapts an element to this protocol. The ` ` box is
one of those elements. Angular provides *value accessors* for all of the basic HTML form elements and the
[_Forms_](guide/forms) guide shows how to bind to them. You can't apply `[(ngModel)]` to a non-form native
element or a third-party custom component until you write a suitable *value accessor*, a technique that is
beyond the scope of this guide. You don't need a _value accessor_ for an Angular component that you write
because you can name the value and event properties to suit Angular's basic [two-way binding syntax]
(guide/template-syntax#two-way) and skip `NgModel` altogether. The [`sizer` shown above](guide/template-
syntax#two-way) is an example of this technique.

Separate ngModel bindings is an improvement over binding to the element's native properties. You can do
better.

You shouldn't have to mention the data property twice. Angular should be able to capture the component's data
property and set it with a single declaration, which it can with the [(ngModel)] syntax:

Is [(ngModel)] all you need? Is there ever a reason to fall back to its expanded form?

The [(ngModel)] syntax can only set a data-bound property. If you need to do something more or
something different, you can write the expanded form.

The following contrived example forces the input value to uppercase:

Inside [(ngModel)]

Here are all variations in action, including the uppercase version:

{@a structural-directives}

Structural directives are responsible for HTML layout. They shape or reshape the DOM's structure, typically by
adding, removing, and manipulating the host elements to which they are attached.

The deep details of structural directives are covered in the Structural Directives guide where you'll learn:

why you prefix the directive name with an asterisk (*).
to use <ng-container> to group elements when there is no suitable host element for the directive.
how to write your own structural directive.
that you can only apply one structural directive to an element.

This section is an introduction to the common structural directives:

NgIf - conditionally add or remove an element from the DOM
NgSwitch - a set of directives that switch among alternative views

NgForOf - repeat a template for each item in a list

{@a ngIf}

You can add or remove an element from the DOM by applying an NgIf directive to that element (called the
host element). Bind the directive to a condition expression like isActive in this example.

Built-in structural directives

NgIf

Don't forget the asterisk (`*`) in front of `ngIf`.

When the isActive expression returns a truthy value, NgIf adds the HeroDetailComponent to the
DOM. When the expression is falsy, NgIf removes the HeroDetailComponent from the DOM,
destroying that component and all of its sub-components.

You can control the visibility of an element with a class or style binding:

Hiding an element is quite different from removing an element with NgIf .

When you hide an element, that element and all of its descendents remain in the DOM. All components for
those elements stay in memory and Angular may continue to check for changes. You could be holding onto
considerable computing resources and degrading performance, for something the user can't see.

When NgIf is false , Angular removes the element and its descendents from the DOM. It destroys their
components, potentially freeing up substantial resources, resulting in a more responsive user experience.

The show/hide technique is fine for a few elements with few children. You should be wary when hiding large
component trees; NgIf may be the safer choice.

The ngIf directive is often used to guard against null. Show/hide is useless as a guard. Angular will throw
an error if a nested expression tries to access a property of null .

Here we see NgIf guarding two <div> s. The currentHero name will appear only when there is a
currentHero . The nullHero will never be displayed.

See also the [_safe navigation operator_](guide/template-syntax#safe-navigation-operator "Safe navigation
operator (?.)") described below.

{@a ngFor}

NgForOf is a repeater directive — a way to present a list of items. You define a block of HTML that defines
how a single item should be displayed. You tell Angular to use that block as a template for rendering each item
in the list.

Here is an example of NgForOf applied to a simple <div> :

Show/hide is not the same thing

Guard against null

NgForOf

You can also apply an NgForOf to a component element, as in this example:

Don't forget the asterisk (`*`) in front of `ngFor`.

The text assigned to *ngFor is the instruction that guides the repeater process.

{@a microsyntax}

The string assigned to *ngFor is not a template expression. It's a microsyntax — a little language of its own
that Angular interprets. The string "let hero of heroes" means:

Take each hero in the heroes array, store it in the local hero looping variable, and make it available
to the templated HTML for each iteration.

Angular translates this instruction into a <ng-template> around the host element, then uses this template
repeatedly to create a new set of elements and bindings for each hero in the list.

Learn about the microsyntax in the Structural Directives guide.

{@a template-input-variable}

{@a template-input-variables}

The let keyword before hero creates a template input variable called hero . The NgForOf

directive iterates over the heroes array returned by the parent component's heroes property and sets
hero to the current item from the array during each iteration.

You reference the hero input variable within the NgForOf host element (and within its descendants) to
access the hero's properties. Here it is referenced first in an interpolation and then passed in a binding to the
hero property of the <hero-detail> component.

Learn more about template input variables in the Structural Directives guide.

The index property of the NgForOf directive context returns the zero-based index of the item in each
iteration. You can capture the index in a template input variable and use it in the template.

The next example captures the index in a variable named i and displays it with the hero name like this.

*ngFor microsyntax

Template input variables

*ngFor with index

`NgFor` is implemented by the `NgForOf` directive. Read more about the other `NgForOf` context values such
as `last`, `even`, and `odd` in the [NgForOf API reference](api/common/NgForOf).

{@a trackBy}

The NgForOf directive may perform poorly, especially with large lists. A small change to one item, an item
removed, or an item added can trigger a cascade of DOM manipulations.

For example, re-querying the server could reset the list with all new hero objects.

Most, if not all, are previously displayed heroes. You know this because the id of each hero hasn't changed.
But Angular sees only a fresh list of new object references. It has no choice but to tear down the old DOM
elements and insert all new DOM elements.

Angular can avoid this churn with trackBy . Add a method to the component that returns the value
NgForOf should track. In this case, that value is the hero's id .

In the microsyntax expression, set trackBy to this method.

Here is an illustration of the trackBy effect. "Reset heroes" creates new heroes with the same hero.id s.
"Change ids" creates new heroes with new hero.id s.

With no trackBy , both buttons trigger complete DOM element replacement.
With trackBy , only changing the id triggers element replacement.

*ngFor with trackBy

{@a ngSwitch}

NgSwitch is like the JavaScript switch statement. It can display one element from among several possible
elements, based on a switch condition. Angular puts only the selected element into the DOM.

NgSwitch is actually a set of three, cooperating directives: NgSwitch , NgSwitchCase , and
NgSwitchDefault as seen in this example.

The NgSwitch directives

NgSwitch is the controller directive. Bind it to an expression that returns the switch value. The emotion

value in this example is a string, but the switch value can be of any type.

Bind to [ngSwitch] . You'll get an error if you try to set *ngSwitch because NgSwitch is an
attribute directive, not a structural directive. It changes the behavior of its companion directives. It doesn't touch
the DOM directly.

Bind to *ngSwitchCase and *ngSwitchDefault . The NgSwitchCase and NgSwitchDefault

directives are structural directives because they add or remove elements from the DOM.

NgSwitchCase adds its element to the DOM when its bound value equals the switch value.
NgSwitchDefault adds its element to the DOM when there is no selected NgSwitchCase .

The switch directives are particularly useful for adding and removing component elements. This example
switches among four "emotional hero" components defined in the hero-switch.components.ts file.
Each component has a hero input property which is bound to the currentHero of the parent
component.

Switch directives work as well with native elements and web components too. For example, you could replace
the <confused-hero> switch case with the following.

{@a template-reference-variable}

{@a ref-vars}

{@a ref-var}

A template reference variable is often a reference to a DOM element within a template. It can also be a
reference to an Angular component or directive or a web component.

Use the hash symbol (#) to declare a reference variable. The #phone declares a phone variable on an
<input> element.

Template reference variables (#var)

You can refer to a template reference variable anywhere in the template. The phone variable declared on
this <input> is consumed in a <button> on the other side of the template

In most cases, Angular sets the reference variable's value to the element on which it was declared. In the
previous example, phone refers to the phone number <input> box. The phone button click handler
passes the input value to the component's callPhone method. But a directive can change that behavior
and set the value to something else, such as itself. The NgForm directive does that.

The following is a simplified version of the form example in the Forms guide.

A template reference variable, heroForm , appears three times in this example, separated by a large amount
of HTML. What is the value of heroForm ?

If Angular hadn't taken it over when you imported the FormsModule , it would be the HTMLFormElement.
The heroForm is actually a reference to an Angular NgForm directive with the ability to track the value and
validity of every control in the form.

The native <form> element doesn't have a form property. But the NgForm directive does, which
explains how you can disable the submit button if the heroForm.form.valid is invalid and pass the entire
form control tree to the parent component's onSubmit method.

A template reference variable (#phone) is not the same as a template input variable (let phone) such
as you might see in an *ngFor . Learn the difference in the Structural Directives guide.

The scope of a reference variable is the entire template. Do not define the same variable name more than once
in the same template. The runtime value will be unpredictable.

You can use the ref- prefix alternative to # . This example declares the fax variable as ref-fax

instead of #fax .

{@a inputs-outputs}

An Input property is a settable property annotated with an @Input decorator. Values flow into the property
when it is data bound with a property binding

How a reference variable gets its value

Template reference variable warning notes

Input and Output properties

An Output property is an observable property annotated with an @Output decorator. The property almost
always returns an Angular EventEmitter . Values flow out of the component as events bound with an
event binding.

You can only bind to another component or directive through its Input and Output properties.

Remember that all **components** are **directives**. The following discussion refers to _components_ for
brevity and because this topic is mostly a concern for component authors.

You are usually binding a template to its own component class. In such binding expressions, the component's
property or method is to the right of the (=).

The iconUrl and onSave are members of the AppComponent class. They are not decorated with
@Input() or @Output . Angular does not object.

You can always bind to a public property of a component in its own template. It doesn't have to be an
Input or Output property

A component's class and template are closely coupled. They are both parts of the same thing. Together they
are the component. Exchanges between a component class and its template are internal implementation
details.

You can also bind to a property of a different component. In such bindings, the other component's property is to
the left of the (=).

In the following example, the AppComponent template binds AppComponent class members to
properties of the HeroDetailComponent whose selector is 'app-hero-detail' .

The Angular compiler may reject these bindings with errors like this one:

Uncaught Error: Template parse errors: Can't bind to 'hero' since it isn't a known property of 'app-hero-detail'

You know that HeroDetailComponent has hero and deleteRequest properties. But the Angular
compiler refuses to recognize them.

The Angular compiler won't bind to properties of a different component unless they are Input or Output
properties.

There's a good reason for this rule.

Discussion

Binding to a different component

It's OK for a component to bind to its own properties. The component author is in complete control of those
bindings.

But other components shouldn't have that kind of unrestricted access. You'd have a hard time supporting your
component if anyone could bind to any of its properties. Outside components should only be able to bind to the
component's public binding API.

Angular asks you to be explicit about that API. It's up to you to decide which properties are available for binding
by external components.

You can't use the TypeScript public and private access modifiers to shape the component's public binding API.

All data bound properties must be TypeScript _public_ properties. Angular never binds to a TypeScript
private property.

Angular requires some other way to identify properties that outside components are allowed to bind to. That
other way is the @Input() and @Output() decorators.

In the sample for this guide, the bindings to HeroDetailComponent do not fail because the data bound
properties are annotated with @Input() and @Output() decorators.

Alternatively, you can identify members in the `inputs` and `outputs` arrays of the directive metadata, as in this
example:

Input properties usually receive data values. Output properties expose event producers, such as
EventEmitter objects.

The terms input and output reflect the perspective of the target directive.

HeroDetailComponent.hero is an input property from the perspective of HeroDetailComponent

because data flows into that property from a template binding expression.

HeroDetailComponent.deleteRequest is an output property from the perspective of

TypeScript public doesn't matter

Declaring Input and Output properties

Input or output?

HeroDetailComponent because events stream out of that property and toward the handler in a template
binding statement.

Sometimes the public name of an input/output property should be different from the internal name.

This is frequently the case with attribute directives. Directive consumers expect to bind to the name of the
directive. For example, when you apply a directive with a myClick selector to a <div> tag, you expect to
bind to an event property that is also called myClick .

However, the directive name is often a poor choice for the name of a property within the directive class. The
directive name rarely describes what the property does. The myClick directive name is not a good name for
a property that emits click messages.

Fortunately, you can have a public name for the property that meets conventional expectations, while using a
different name internally. In the example immediately above, you are actually binding through the myClick

alias to the directive's own clicks property.

You can specify the alias for the property name by passing it into the input/output decorator like this:

You can also alias property names in the `inputs` and `outputs` arrays. You write a colon-delimited (`:`) string
with the directive property name on the *left* and the public alias on the *right*:

{@a expression-operators}

The template expression language employs a subset of JavaScript syntax supplemented with a few special
operators for specific scenarios. The next sections cover two of these operators: pipe and safe navigation
operator.

{@a pipe}

The result of an expression might require some transformation before you're ready to use it in a binding. For
example, you might display a number as a currency, force text to uppercase, or filter a list and sort it.

Angular pipes are a good choice for small transformations such as these. Pipes are simple functions that
accept an input value and return a transformed value. They're easy to apply within template expressions, using

Aliasing input/output properties

Template expression operators

The pipe operator (|)

the pipe operator (|):

The pipe operator passes the result of an expression on the left to a pipe function on the right.

You can chain expressions through multiple pipes:

And you can also apply parameters to a pipe:

The json pipe is particularly helpful for debugging bindings:

The generated output would look something like this

{ "id": 0, "name": "Hercules", "emotion": "happy", "birthdate": "1970-02-25T08:00:00.000Z", "url":
"http://www.imdb.com/title/tt0065832/", "rate": 325 }

{@a safe-navigation-operator}

The Angular safe navigation operator (?.) is a fluent and convenient way to guard against null and
undefined values in property paths. Here it is, protecting against a view render failure if the currentHero is
null.

What happens when the following data bound title property is null?

The view still renders but the displayed value is blank; you see only "The title is" with nothing after it. That is
reasonable behavior. At least the app doesn't crash.

Suppose the template expression involves a property path, as in this next example that displays the name of
a null hero.

The null hero's name is {{nullHero.name}}

JavaScript throws a null reference error, and so does Angular:

TypeError: Cannot read property 'name' of null in [null].

Worse, the entire view disappears.

This would be reasonable behavior if the hero property could never be null. If it must never be null and yet it
is null, that's a programming error that should be caught and fixed. Throwing an exception is the right thing to
do.

The safe navigation operator (?.) and null property paths

On the other hand, null values in the property path may be OK from time to time, especially when the data are
null now and will arrive eventually.

While waiting for data, the view should render without complaint, and the null property path should display as
blank just as the title property does.

Unfortunately, the app crashes when the currentHero is null.

You could code around that problem with *ngIf.

You could try to chain parts of the property path with && , knowing that the expression bails out when it
encounters the first null.

These approaches have merit but can be cumbersome, especially if the property path is long. Imagine
guarding against a null somewhere in a long property path such as a.b.c.d .

The Angular safe navigation operator (?.) is a more fluent and convenient way to guard against nulls in
property paths. The expression bails out when it hits the first null value. The display is blank, but the app keeps
rolling without errors.

It works perfectly with long property paths such as a?.b?.c?.d .

{@a non-null-assertion-operator}

As of Typescript 2.0, you can enforce strict null checking with the --strictNullChecks flag. TypeScript
then ensures that no variable is unintentionally null or undefined.

In this mode, typed variables disallow null and undefined by default. The type checker throws an error if you
leave a variable unassigned or try to assign null or undefined to a variable whose type disallows null and
undefined.

The type checker also throws an error if it can't determine whether a variable will be null or undefined at
runtime. You may know that can't happen but the type checker doesn't know. You tell the type checker that it
can't happen by applying the post-fix non-null assertion operator (!).

The Angular non-null assertion operator (!) serves the same purpose in an Angular template.

For example, after you use *ngIf to check that hero is defined, you can assert that hero properties are
also defined.

The non-null assertion operator (!)

When the Angular compiler turns your template into TypeScript code, it prevents TypeScript from reporting that
hero.name might be null or undefined.

Unlike the safe navigation operator, the non-null assertion operator does not guard against null or undefined.
Rather it tells the TypeScript type checker to suspend strict null checks for a specific property expression.

You'll need this template operator when you turn on strict null checks. It's optional otherwise.

back to top

You've completed this survey of template syntax. Now it's time to put that knowledge to work on your own
components and directives.

Summary

This guide offers tips and techniques for testing Angular applications. Though this page includes some general
testing principles and techniques, the focus is on testing applications written with Angular.

{@a top}

This guide presents tests of a sample application that is much like the Tour of Heroes tutorial. The sample
application and all tests in this guide are available as live examples for inspection, experiment, and download:

A spec to verify the test environment.
The first component spec with inline template.
A component spec with external template.
The QuickStart seed's AppComponent spec.
The sample application to be tested.
All specs that test the sample application.
A grab bag of additional specs.

{@a testing-intro}

This page guides you through writing tests to explore and confirm the behavior of the application. Testing does
the following:

1. Guards against changes that break existing code (“regressions”).

2. Clarifies what the code does both when used as intended and when faced with deviant conditions.

3. Reveals mistakes in design and implementation. Tests shine a harsh light on the code from many angles.
When a part of the application seems hard to test, the root cause is often a design flaw, something to cure
now rather than later when it becomes expensive to fix.

{@a tools-and-tech}

Testing

Live examples

Introduction to Angular Testing

You can write and run Angular tests with a variety of tools and technologies. This guide describes specific
choices that are known to work well.

Technology Purpose

Jasmine The [Jasmine test framework](http://jasmine.github.io/2.4/introduction.html) provides
everything needed to write basic tests. It ships with an HTML test runner that
executes tests in the browser.

Angular testing
utilities

Angular testing utilities create a test environment for the Angular application code
under test. Use them to condition and control parts of the application as they interact
within the Angular environment.

Karma The [karma test runner](https://karma-runner.github.io/1.0/index.html) is ideal for
writing and running unit tests while developing the application. It can be an integral
part of the project's development and continuous integration processes. This guide
describes how to set up and run tests with karma.

Protractor Use protractor to write and run _end-to-end_ (e2e) tests. End-to-end tests explore
the application _as users experience it_. In e2e testing, one process runs the real
application and a second process runs protractor tests that simulate user behavior
and assert that the application respond in the browser as expected.

{@a setup}

There are two fast paths to getting started with unit testing.

1. Start a new project following the instructions in Setup.

2. Start a new project with the Angular CLI.

Both approaches install npm packages, files, and scripts pre-configured for applications built in their respective
modalities. Their artifacts and procedures differ slightly but their essentials are the same and there are no
differences in the test code.

In this guide, the application and its tests are based on the setup instructions. For a discussion of the unit
testing setup files, see below.

Tools and technologies

Setup

{@a isolated-v-testing-utilities}

Isolated unit tests examine an instance of a class all by itself without any dependence on Angular or any
injected values. The tester creates a test instance of the class with new , supplying test doubles for the
constructor parameters as needed, and then probes the test instance API surface.

You should write isolated unit tests for pipes and services.

You can test components in isolation as well. However, isolated unit tests don't reveal how components interact
with Angular. In particular, they can't reveal how a component class interacts with its own template or with other
components.

Such tests require the Angular testing utilities. The Angular testing utilities include the TestBed class and
several helper functions from @angular/core/testing . They are the main focus of this guide and you'll
learn about them when you write your first component test. A comprehensive review of the Angular testing
utilities appears later in this guide.

But first you should write a dummy test to verify that your test environment is set up properly and to lock in a
few basic testing skills.

{@a 1st-karma-test}

Start with a simple test to make sure that the setup works properly.

Create a new file called 1st.spec.ts in the application root folder, src/app/

Tests written in Jasmine are called _specs_ . **The filename extension must be `.spec.ts`**, the convention
adhered to by `karma.conf.js` and other tooling.

Put spec files somewhere within the src/app/ folder. The karma.conf.js tells karma to look for
spec files there, for reasons explained below.

Add the following code to src/app/1st.spec.ts .

{@a run-karma}

Isolated unit tests vs. the Angular testing utilities

The first karma test

Run with karma

Compile and run it in karma from the command line using the following command:

npm test

The command compiles the application and test code and starts karma. Both processes watch pertinent files,
write messages to the console, and re-run when they detect changes.

The documentation setup defines the `test` command in the `scripts` section of npm's `package.json`. The
Angular CLI has different commands to do the same thing. Adjust accordingly.

After a few moments, karma opens a browser and starts writing to the console.

Hide (don't close!) the browser and focus on the console output, which should look something like this:

npm test ... [0] 1:37:03 PM - Compilation complete. Watching for file changes. ... [1] Chrome 51.0.2704:
Executed 0 of 0 SUCCESS Chrome 51.0.2704: Executed 1 of 1 SUCCESS SUCCESS (0.005 secs /
0.005 secs)

Both the compiler and karma continue to run. The compiler output is preceded by [0] ; the karma output by
[1] .

Change the expectation from true to false .

The compiler watcher detects the change and recompiles.

[0] 1:49:21 PM - File change detected. Starting incremental compilation... [0] 1:49:25 PM - Compilation
complete. Watching for file changes.

The karma watcher detects the change to the compilation output and re-runs the test.

[1] Chrome 51.0.2704 1st tests true is true FAILED [1] Expected false to equal true. [1] Chrome 51.0.2704:
Executed 1 of 1 (1 FAILED) (0.005 secs / 0.005 secs)

It fails of course.

Restore the expectation from false back to true . Both processes detect the change, re-run, and karma

reports complete success.

The console log can be quite long. Keep your eye on the last line. When all is well, it reads `SUCCESS`.

{@a test-debugging}

Debug specs in the browser in the same way that you debug an application.

1. Reveal the karma browser window (hidden earlier).
2. Click the DEBUG button; it opens a new browser tab and re-runs the tests.
3. Open the browser's “Developer Tools” (Ctrl-Shift-I on windows; Command-Option-I in OSX).
4. Pick the "sources" section.
5. Open the 1st.spec.ts test file (Control/Command-P, then start typing the name of the file).
6. Set a breakpoint in the test.
7. Refresh the browser, and it stops at the breakpoint.

{@a live-karma-example}

You can also try this test as a in plunker. All of the tests in this guide are available as live examples.

{@a simple-component-test}

An Angular component is the first thing most developers want to test. The BannerComponent in
src/app/banner-inline.component.ts is the simplest component in this application and a good

place to start. It presents the application title at the top of the screen within an <h1> tag.

This version of the BannerComponent has an inline template and an interpolation binding. The component

Test debugging

Try the live example

Test a component

is probably too simple to be worth testing in real life but it's perfect for a first encounter with the Angular testing
utilities.

The corresponding src/app/banner-inline.component.spec.ts sits in the same folder as the
component, for reasons explained in the FAQ answer to "Why put specs next to the things they test?".

Start with ES6 import statements to get access to symbols referenced in the spec.

{@a configure-testing-module}

Here's the describe and the beforeEach that precedes the tests:

{@a testbed}

TestBed is the first and most important of the Angular testing utilities. It creates an Angular testing module
—an @NgModule class—that you configure with the configureTestingModule method to produce the
module environment for the class you want to test. In effect, you detach the tested component from its own
application module and re-attach it to a dynamically-constructed Angular test module tailored specifically for
this battery of tests.

The configureTestingModule method takes an @NgModule -like metadata object. The metadata
object can have most of the properties of a normal NgModule.

This metadata object simply declares the component to test, BannerComponent . The metadata lack
imports because (a) the default testing module configuration already has what BannerComponent

needs and (b) BannerComponent doesn't interact with any other components.

Call configureTestingModule within a beforeEach so that TestBed can reset itself to a base
state before each test runs.

The base state includes a default testing module configuration consisting of the declarables (components,
directives, and pipes) and providers (some of them mocked) that almost everyone needs.

The testing shims mentioned [later](guide/testing#testbed-methods) initialize the testing module configuration
to something like the `BrowserModule` from `@angular/platform-browser`.

This default configuration is merely a foundation for testing an app. Later you'll call
TestBed.configureTestingModule with more metadata that define additional imports, declarations,

providers, and schemas to fit your application tests. Optional override methods can fine-tune aspects of
the configuration.

TestBed

{@a create-component}

After configuring TestBed , you tell it to create an instance of the component-under-test. In this example,
TestBed.createComponent creates an instance of BannerComponent and returns a component test

fixture.

Do not re-configure `TestBed` after calling `createComponent`.

The createComponent method closes the current TestBed instance to further configuration. You
cannot call any more TestBed configuration methods, not configureTestingModule nor any of the
override... methods. If you try, TestBed throws an error.

{@a component-fixture}

The createComponent method returns a ComponentFixture , a handle on the test environment
surrounding the created component. The fixture provides access to the component instance itself and to the
DebugElement , which is a handle on the component's DOM element.

The title property value is interpolated into the DOM within <h1> tags. Use the fixture's
DebugElement to query for the <h1> element by CSS selector.

The query method takes a predicate function and searches the fixture's entire DOM tree for the first
element that satisfies the predicate. The result is a different DebugElement , one associated with the
matching DOM element.

The `queryAll` method returns an array of _all_ `DebugElements` that satisfy the predicate. A _predicate_ is a
function that returns a boolean. A query predicate receives a `DebugElement` and returns `true` if the element
meets the selection criteria.

The By class is an Angular testing utility that produces useful predicates. Its By.css static method
produces a standard CSS selector predicate that filters the same way as a jQuery selector.

Finally, the setup assigns the DOM element from the DebugElement nativeElement property to el .
The tests assert that el contains the expected title text.

{@a the-tests}

createComponent

ComponentFixture, DebugElement, and query(By.css)

The tests

Jasmine runs the beforeEach function before each of these tests

These tests ask the DebugElement for the native HTML element to satisfy their expectations.

{@a detect-changes}

Each test tells Angular when to perform change detection by calling fixture.detectChanges() . The first
test does so immediately, triggering data binding and propagation of the title property to the DOM
element.

The second test changes the component's title property and only then calls
fixture.detectChanges() ; the new value appears in the DOM element.

In production, change detection kicks in automatically when Angular creates a component or the user enters a
keystroke or an asynchronous activity (e.g., AJAX) completes.

The TestBed.createComponent does not trigger change detection. The fixture does not automatically
push the component's title property value into the data bound element, a fact demonstrated in the
following test:

This behavior (or lack of it) is intentional. It gives the tester an opportunity to inspect or change the state of the
component before Angular initiates data binding or calls lifecycle hooks.

{@a try-example}

Take a moment to explore this component spec as a and lock in these fundamentals of component unit testing.

{@a auto-detect-changes}

The BannerComponent tests frequently call detectChanges . Some testers prefer that the Angular test
environment run change detection automatically.

That's possible by configuring the TestBed with the ComponentFixtureAutoDetect provider. First
import it from the testing utility library:

Then add it to the providers array of the testing module configuration:

detectChanges: Angular change detection within a test

Try the live example

Automatic change detection

Here are three tests that illustrate how automatic change detection works.

The first test shows the benefit of automatic change detection.

The second and third test reveal an important limitation. The Angular testing environment does not know that
the test changed the component's title . The ComponentFixtureAutoDetect service responds to
asynchronous activities such as promise resolution, timers, and DOM events. But a direct, synchronous update
of the component property is invisible. The test must call fixture.detectChanges() manually to trigger
another cycle of change detection.

Rather than wonder when the test fixture will or won't perform change detection, the samples in this guide
always call `detectChanges()` _explicitly_. There is no harm in calling `detectChanges()` more often than is
strictly necessary.

{@a component-with-external-template}

The application's actual BannerComponent behaves the same as the version above but is implemented
differently. It has external template and css files, specified in templateUrl and styleUrls properties.

That's a problem for the tests. The TestBed.createComponent method is synchronous. But the Angular
template compiler must read the external files from the file system before it can create a component instance.
That's an asynchronous activity. The previous setup for testing the inline component won't work for a
component with an external template.

The test setup for BannerComponent must give the Angular template compiler time to read the files. The
logic in the beforeEach of the previous spec is split into two beforeEach calls. The first
beforeEach handles asynchronous compilation.

Notice the async function called as the argument to beforeEach . The async function is one of the
Angular testing utilities and has to be imported.

It takes a parameterless function and returns a function which becomes the true argument to the
beforeEach .

The body of the async argument looks much like the body of a synchronous beforeEach . There is
nothing obviously asynchronous about it. For example, it doesn't return a promise and there is no done

function to call as there would be in standard Jasmine asynchronous tests. Internally, async arranges for

Test a component with an external template

The first asynchronous beforeEach

the body of the beforeEach to run in a special async test zone that hides the mechanics of asynchronous
execution.

All this is necessary in order to call the asynchronous TestBed.compileComponents method.

{@a compile-components}

The TestBed.configureTestingModule method returns the TestBed class so you can chain calls to
other TestBed static methods such as compileComponents .

The TestBed.compileComponents method asynchronously compiles all the components configured in
the testing module. In this example, the BannerComponent is the only component to compile. When
compileComponents completes, the external templates and css files have been "inlined" and
TestBed.createComponent can create new instances of BannerComponent synchronously.

WebPack developers need not call `compileComponents` because it inlines templates and css as part of the
automated build process that precedes running the test.

In this example, TestBed.compileComponents only compiles the BannerComponent . Tests later in
the guide declare multiple components and a few specs import entire application modules that hold yet more
components. Any of these components might have external templates and css files.
TestBed.compileComponents compiles all of the declared components asynchronously at one time.

Do not configure the `TestBed` after calling `compileComponents`. Make `compileComponents` the last step
before calling `TestBed.createComponent` to instantiate the _component-under-test_.

Calling compileComponents closes the current TestBed instance to further configuration. You cannot
call any more TestBed configuration methods, not configureTestingModule nor any of the
override... methods. The TestBed throws an error if you try.

{@a second-before-each}

A synchronous beforeEach containing the remaining setup steps follows the asynchronous
beforeEach .

These are the same steps as in the original beforeEach . They include creating an instance of the
BannerComponent and querying for the elements to inspect.

compileComponents

The second synchronous beforeEach

You can count on the test runner to wait for the first asynchronous beforeEach to finish before calling the
second.

{@a waiting-compile-components}

The compileComponents method returns a promise so you can perform additional tasks immediately after
it finishes. For example, you could move the synchronous code in the second beforeEach into a
compileComponents().then(...) callback and write only one beforeEach .

Most developers find that hard to read. The two beforeEach calls are widely preferred.

{@a live-external-template-example}

Take a moment to explore this component spec as a .

The [Quickstart seed](guide/setup) provides a similar test of its `AppComponent` as you can see in _this_ . It
too calls `compileComponents` although it doesn't have to because the `AppComponent`'s template is inline.
There's no harm in it and you might call `compileComponents` anyway in case you decide later to re-factor the
template into a separate file. The tests in this guide only call `compileComponents` when necessary.

{@a component-with-dependency}

Components often have service dependencies.

The WelcomeComponent displays a welcome message to the logged in user. It knows who the user is
based on a property of the injected UserService :

The WelcomeComponent has decision logic that interacts with the service, logic that makes this component
worth testing. Here's the testing module configuration for the spec file,
src/app/welcome.component.spec.ts :

This time, in addition to declaring the component-under-test, the configuration adds a UserService

provider to the providers list. But not the real UserService .

{@a service-test-doubles}

Waiting for compileComponents

Try the live example

Test a component with a dependency

A component-under-test doesn't have to be injected with real services. In fact, it is usually better if they are test
doubles (stubs, fakes, spies, or mocks). The purpose of the spec is to test the component, not the service, and
real services can be trouble.

Injecting the real UserService could be a nightmare. The real service might ask the user for login
credentials and attempt to reach an authentication server. These behaviors can be hard to intercept. It is far
easier and safer to create and register a test double in place of the real UserService .

This particular test suite supplies a minimal UserService stub that satisfies the needs of the
WelcomeComponent and its tests:

{@a get-injected-service}

The tests need access to the (stub) UserService injected into the WelcomeComponent .

Angular has a hierarchical injection system. There can be injectors at multiple levels, from the root injector
created by the TestBed down through the component tree.

The safest way to get the injected service, the way that always works, is to get it from the injector of the
component-under-test. The component injector is a property of the fixture's DebugElement .

{@a testbed-get}

You may also be able to get the service from the root injector via TestBed.get . This is easier to remember
and less verbose. But it only works when Angular injects the component with the service instance in the test's
root injector. Fortunately, in this test suite, the only provider of UserService is the root testing module, so it
is safe to call TestBed.get as follows:

The [`inject`](guide/testing#inject) utility function is another way to get one or more services from the test root
injector. For a use case in which `inject` and `TestBed.get` do not work, see the section [_Override a
component's providers_](guide/testing#component-override), which explains why you must get the service from
the component's injector instead.

{@a service-from-injector}

Provide service test doubles

Get injected services

TestBed.get

Always get the service from an injector

Do not reference the userServiceStub object that's provided to the testing module in the body of your
test. It does not work! The userService instance injected into the component is a completely different
object, a clone of the provided userServiceStub .

{@a welcome-spec-setup}

Here's the complete beforeEach using TestBed.get :

And here are some tests:

The first is a sanity test; it confirms that the stubbed UserService is called and working.

The second parameter to the Jasmine matcher (e.g., `'expected name'`) is an optional addendum. If the
expectation fails, Jasmine displays this addendum after the expectation failure message. In a spec with
multiple expectations, it can help clarify what went wrong and which expectation failed.

The remaining tests confirm the logic of the component when the service returns different values. The second
test validates the effect of changing the user name. The third test checks that the component displays the
proper message when there is no logged-in user.

{@a component-with-async-service}

Many services return values asynchronously. Most data services make an HTTP request to a remote server
and the response is necessarily asynchronous.

The "About" view in this sample displays Mark Twain quotes. The TwainComponent handles the display,
delegating the server request to the TwainService .

Both are in the src/app/shared folder because the author intends to display Twain quotes on other pages
someday. Here is the TwainComponent .

The TwainService implementation is irrelevant for this particular test. It is sufficient to see within
ngOnInit that twainService.getQuote returns a promise, which means it is asynchronous.

In general, tests should not make calls to remote servers. They should emulate such calls. The setup in this
src/app/shared/twain.component.spec.ts shows one way to do that:

Final setup and tests

Test a component with an async service

{@a service-spy}

This setup is similar to the welcome.component.spec setup. But instead of creating a stubbed service
object, it injects the real service (see the testing module providers) and replaces the critical getQuote

method with a Jasmine spy.

The spy is designed such that any call to getQuote receives an immediately resolved promise with a test
quote. The spy bypasses the actual getQuote method and therefore does not contact the server.

Faking a service instance and spying on the real service are _both_ great options. Pick the one that seems
easiest for the current test suite. Don't be afraid to change your mind. Spying on the real service isn't always
easy, especially when the real service has injected dependencies. You can _stub and spy_ at the same time,
as shown in [an example below](guide/testing#spy-stub).

Here are the tests with commentary to follow:

{@a sync-tests}

The first two tests are synchronous. Thanks to the spy, they verify that getQuote is called after the first
change detection cycle during which Angular calls ngOnInit .

Neither test can prove that a value from the service is displayed. The quote itself has not arrived, despite the
fact that the spy returns a resolved promise.

This test must wait at least one full turn of the JavaScript engine before the value becomes available. The test
must become asynchronous.

{@a async}

Notice the async in the third test.

The async function is one of the Angular testing utilities. It simplifies coding of asynchronous tests by
arranging for the tester's code to run in a special async test zone as discussed earlier when it was called in a
beforeEach .

Although async does a great job of hiding asynchronous boilerplate, some functions called within a test

Spying on the real service

Synchronous tests

The async function in it

(such as fixture.whenStable) continue to reveal their asynchronous behavior.

The `fakeAsync` alternative, [covered below](guide/testing#fake-async), removes this artifact and affords a
more linear coding experience.

{@a when-stable}

The test must wait for the getQuote promise to resolve in the next turn of the JavaScript engine.

This test has no direct access to the promise returned by the call to twainService.getQuote because it
is buried inside TwainComponent.ngOnInit and therefore inaccessible to a test that probes only the
component API surface.

Fortunately, the getQuote promise is accessible to the async test zone, which intercepts all promises
issued within the async method call no matter where they occur.

The ComponentFixture.whenStable method returns its own promise, which resolves when the
getQuote promise finishes. In fact, the whenStable promise resolves when all pending asynchronous

activities within this test complete—the definition of "stable."

Then the test resumes and kicks off another round of change detection (fixture.detectChanges), which
tells Angular to update the DOM with the quote. The getQuote helper method extracts the display element
text and the expectation confirms that the text matches the test quote.

{@a fakeAsync}

{@a fake-async}

The fourth test verifies the same component behavior in a different way.

Notice that fakeAsync replaces async as the it argument. The fakeAsync function is another of
the Angular testing utilities.

Like async, it takes a parameterless function and returns a function that becomes the argument to the Jasmine
it call.

The fakeAsync function enables a linear coding style by running the test body in a special fakeAsync test
zone.

whenStable

The fakeAsync function

The principle advantage of fakeAsync over async is that the test appears to be synchronous. There is
no then(...) to disrupt the visible flow of control. The promise-returning fixture.whenStable is
gone, replaced by tick() .

There _are_ limitations. For example, you cannot make an XHR call from within a `fakeAsync`.

{@a tick}

The tick function is one of the Angular testing utilities and a companion to fakeAsync . You can only
call it within a fakeAsync body.

Calling tick() simulates the passage of time until all pending asynchronous activities finish, including the
resolution of the getQuote promise in this test case.

It returns nothing. There is no promise to wait for. Proceed with the same test code that appeared in the
whenStable.then() callback.

Even this simple example is easier to read than the third test. To more fully appreciate the improvement,
imagine a succession of asynchronous operations, chained in a long sequence of promise callbacks.

{@a jasmine-done}

While the async and fakeAsync functions greatly simplify Angular asynchronous testing, you can still
fall back to the traditional Jasmine asynchronous testing technique.

You can still pass it a function that takes a done callback. Now you are responsible for chaining
promises, handling errors, and calling done at the appropriate moment.

Here is a done version of the previous two tests:

Although there is no direct access to the getQuote promise inside TwainComponent , the spy has direct
access, which makes it possible to wait for getQuote to finish.

Writing test functions with done , while more cumbersome than async and fakeAsync , is a viable and
occasionally necessary technique. For example, you can't call async or fakeAsync when testing code
that involves the intervalTimer , as is common when testing async Observable methods.

{@a component-with-input-output}

The tick function

jasmine.done

A component with inputs and outputs typically appears inside the view template of a host component. The host
uses a property binding to set the input property and an event binding to listen to events raised by the output
property.

The testing goal is to verify that such bindings work as expected. The tests should set input values and listen
for output events.

The DashboardHeroComponent is a tiny example of a component in this role. It displays an individual hero
provided by the DashboardComponent . Clicking that hero tells the DashboardComponent that the user
has selected the hero.

The DashboardHeroComponent is embedded in the DashboardComponent template like this:

The DashboardHeroComponent appears in an *ngFor repeater, which sets each component's hero

input property to the looping value and listens for the component's selected event.

Here's the component's definition:

While testing a component this simple has little intrinsic value, it's worth knowing how. You can use one of
these approaches:

Test it as used by DashboardComponent .
Test it as a stand-alone component.
Test it as used by a substitute for DashboardComponent .

A quick look at the DashboardComponent constructor discourages the first approach:

The DashboardComponent depends on the Angular router and the HeroService . You'd probably have
to replace them both with test doubles, which is a lot of work. The router seems particularly challenging.

The [discussion below](guide/testing#routed-component) covers testing components that require the router.

The immediate goal is to test the DashboardHeroComponent , not the DashboardComponent , so, try
the second and third options.

{@a dashboard-standalone}

Here's the spec file setup.

Test a component with inputs and outputs

Test DashboardHeroComponent stand-alone

The async beforeEach was discussed above. Having compiled the components asynchronously with
compileComponents , the rest of the setup proceeds synchronously in a second beforeEach , using

the basic techniques described earlier.

Note how the setup code assigns a test hero (expectedHero) to the component's hero property,
emulating the way the DashboardComponent would set it via the property binding in its repeater.

The first test follows:

It verifies that the hero name is propagated to template with a binding. Because the template passes the hero
name through the Angular UpperCasePipe , the test must match the element value with the uppercased
name:

This small test demonstrates how Angular tests can verify a component's visual representation—something not
possible with [isolated unit tests](guide/testing#isolated-component-tests)—at low cost and without resorting to
much slower and more complicated end-to-end tests.

The second test verifies click behavior. Clicking the hero should raise a selected event that the host
component (DashboardComponent presumably) can hear:

The component exposes an EventEmitter property. The test subscribes to it just as the host component
would do.

The heroEl is a DebugElement that represents the hero <div> . The test calls
triggerEventHandler with the "click" event name. The "click" event binding responds by calling
DashboardHeroComponent.click() .

If the component behaves as expected, click() tells the component's selected property to emit the
hero object, the test detects that value through its subscription to selected , and the test should pass.

{@a trigger-event-handler}

The Angular DebugElement.triggerEventHandler can raise any data-bound event by its event name.
The second parameter is the event object passed to the handler.

In this example, the test triggers a "click" event with a null event object.

The test assumes (correctly in this case) that the runtime event handler—the component's click() method
—doesn't care about the event object.

Other handlers are less forgiving. For example, the RouterLink directive expects an object with a

triggerEventHandler

button property that identifies which mouse button was pressed. This directive throws an error if the event
object doesn't do this correctly.

{@a click-helper}

Clicking a button, an anchor, or an arbitrary HTML element is a common test task.

Make that easy by encapsulating the click-triggering process in a helper such as the click function below:

The first parameter is the element-to-click. If you wish, you can pass a custom event object as the second
parameter. The default is a (partial) left-button mouse event object accepted by many handlers including the
RouterLink directive.

click() is not an Angular testing utility
The `click()` helper function is **not** one of the Angular testing utilities. It's a function defined in _this guide's
sample code_. All of the sample tests use it. If you like it, add it to your own collection of helpers.

Here's the previous test, rewritten using this click helper.

{@a component-inside-test-host}

In the previous approach, the tests themselves played the role of the host DashboardComponent . But does
the DashboardHeroComponent work correctly when properly data-bound to a host component?

Testing with the actual DashboardComponent host is doable but seems more trouble than its worth. It's
easier to emulate the DashboardComponent host with a test host like this one:

The test host binds to DashboardHeroComponent as the DashboardComponent would but without the
distraction of the Router , the HeroService , or even the *ngFor repeater.

The test host sets the component's hero input property with its test hero. It binds the component's
selected event with its onSelected handler, which records the emitted hero in its selectedHero

property. Later, the tests check that property to verify that the DashboardHeroComponent.selected

event emitted the right hero.

The setup for the test-host tests is similar to the setup for the stand-alone tests:

This testing module configuration shows two important differences:

1. It declares both the DashboardHeroComponent and the TestHostComponent .

Test a component inside a test host component

2. It creates the TestHostComponent instead of the DashboardHeroComponent .

The createComponent returns a fixture that holds an instance of TestHostComponent instead
of an instance of DashboardHeroComponent .

Creating the TestHostComponent has the side-effect of creating a DashboardHeroComponent

because the latter appears within the template of the former. The query for the hero element (heroEl) still
finds it in the test DOM, albeit at greater depth in the element tree than before.

The tests themselves are almost identical to the stand-alone version:

Only the selected event test differs. It confirms that the selected DashboardHeroComponent hero really
does find its way up through the event binding to the host component.

{@a routed-component}

Testing the actual DashboardComponent seemed daunting because it injects the Router .

It also injects the HeroService , but faking that is a familiar story. The Router has a complicated API
and is entwined with other services and application preconditions.

Fortunately, the DashboardComponent isn't doing much with the Router

This is often the case. As a rule you test the component, not the router, and care only if the component
navigates with the right address under the given conditions. Stubbing the router with a test implementation is
an easy option. This should do the trick:

Now set up the testing module with the test stubs for the Router and HeroService , and create a test
instance of the DashboardComponent for subsequent testing.

The following test clicks the displayed hero and confirms (with the help of a spy) that
Router.navigateByUrl is called with the expected url.

{@a inject}

Notice the inject function in the second it argument.

The inject function is one of the Angular testing utilities. It injects services into the test function where you

Test a routed component

The inject function

can alter, spy on, and manipulate them.

The inject function has two parameters:

1. An array of Angular dependency injection tokens.
2. A test function whose parameters correspond exactly to each item in the injection token array.

inject uses the TestBed Injector
The `inject` function uses the current `TestBed` injector and can only return services provided at that level. It
does not return services from component providers.

This example injects the Router from the current TestBed injector. That's fine for this test because the
Router is, and must be, provided by the application root injector.

If you need a service provided by the component's own injector, call
fixture.debugElement.injector.get instead:

Use the component's own injector to get the service actually injected into the component.

The inject function closes the current TestBed instance to further configuration. You cannot call any
more TestBed configuration methods, not configureTestingModule nor any of the override...

methods. The TestBed throws an error if you try.

Do not configure the `TestBed` after calling `inject`.

{@a routed-component-w-param}

Clicking a Dashboard hero triggers navigation to heroes/:id , where :id is a route parameter whose
value is the id of the hero to edit. That URL matches a route to the HeroDetailComponent .

The router pushes the :id token value into the ActivatedRoute.params Observable property,
Angular injects the ActivatedRoute into the HeroDetailComponent , and the component extracts the
id so it can fetch the corresponding hero via the HeroDetailService . Here's the
HeroDetailComponent constructor:

HeroDetailComponent subscribes to ActivatedRoute.params changes in its ngOnInit

method.

The expression after `route.params` chains an _Observable_ operator that _plucks_ the `id` from the `params`
and then chains a `forEach` operator to subscribe to `id`-changing events. The `id` changes every time the
user navigates to a different hero. The `forEach` passes the new `id` value to the component's `getHero`

Test a routed component with parameters

method (not shown) which fetches a hero and sets the component's `hero` property. If the`id` parameter is
missing, the `pluck` operator fails and the `catch` treats failure as a request to edit a new hero. The [Router]
(guide/router#route-parameters) guide covers `ActivatedRoute.params` in more detail.

A test can explore how the HeroDetailComponent responds to different id parameter values by
manipulating the ActivatedRoute injected into the component's constructor.

By now you know how to stub the Router and a data service. Stubbing the ActivatedRoute follows
the same pattern except for a complication: the ActivatedRoute.params is an Observable.

{@a stub-observable}

The hero-detail.component.spec.ts relies on an ActivatedRouteStub to set
ActivatedRoute.params values for each test. This is a cross-application, re-usable test helper class.

Consider placing such helpers in a testing folder sibling to the app folder. This sample keeps
ActivatedRouteStub in testing/router-stubs.ts :

Notable features of this stub are:

The stub implements only two of the ActivatedRoute capabilities: params and
snapshot.params .

BehaviorSubject drives the stub's params Observable and returns the same value to every params

subscriber until it's given a new value.

The HeroDetailComponent chains its expressions to this stub params Observable which is now
under the tester's control.

Setting the testParams property causes the subject to push the assigned value into params .
That triggers the HeroDetailComponent params subscription, described above, in the same way that
navigation does.

Setting the testParams property also updates the stub's internal value for the snapshot property
to return.

The [_snapshot_](guide/router#snapshot "Router guide: snapshot") is another popular way for components to
consume route parameters.
The router stubs in this guide are meant to inspire you. Create your own stubs to fit your testing needs.

{@a tests-w-observable-double}

Create an Observable test double

Here's a test demonstrating the component's behavior when the observed id refers to an existing hero:

The `createComponent` method and `page` object are discussed [in the next section](guide/testing#page-
object). Rely on your intuition for now.

When the id cannot be found, the component should re-route to the HeroListComponent . The test
suite setup provided the same RouterStub described above which spies on the router without actually
navigating. This test supplies a "bad" id and expects the component to try to navigate.

While this app doesn't have a route to the HeroDetailComponent that omits the id parameter, it might
add such a route someday. The component should do something reasonable when there is no id .

In this implementation, the component should create and display a new hero. New heroes have id=0 and a
blank name . This test confirms that the component behaves as expected:

Inspect and download _all_ of the guide's application test code with this live example.

{@a page-object}

The HeroDetailComponent is a simple view with a title, two hero fields, and two buttons.

But there's already plenty of template complexity.

To fully exercise the component, the test needs a lot of setup:

It must wait until a hero arrives before *ngIf allows any element in DOM.
It needs references to the title and the name <input> so it can inspect their values.
It needs references to the two buttons so it can click them.

Testing with the Observable test double

Use a page object to simplify setup

It needs spies for some of the component and router methods.

Even a small form such as this one can produce a mess of tortured conditional setup and CSS element
selection.

Tame the madness with a Page class that simplifies access to component properties and encapsulates the
logic that sets them. Here's the Page class for the hero-detail.component.spec.ts

Now the important hooks for component manipulation and inspection are neatly organized and accessible from
an instance of Page .

A createComponent method creates a page object and fills in the blanks once the hero arrives.

The observable tests in the previous section demonstrate how createComponent and page keep the
tests short and on message. There are no distractions: no waiting for promises to resolve and no searching the
DOM for element values to compare.

Here are a few more HeroDetailComponent tests to drive the point home.

{@a import-module}

Earlier component tests configured the testing module with a few declarations like this:

The DashboardComponent is simple. It needs no help. But more complex components often depend on
other components, directives, pipes, and providers and these must be added to the testing module too.

Fortunately, the TestBed.configureTestingModule parameter parallels the metadata passed to the
@NgModule decorator which means you can also specify providers and imports .

The HeroDetailComponent requires a lot of help despite its small size and simple construction. In
addition to the support it receives from the default testing module CommonModule , it needs:

NgModel and friends in the FormsModule to enable two-way data binding.
The TitleCasePipe from the shared folder.
Router services (which these tests are stubbing).
Hero data access services (also stubbed).

One approach is to configure the testing module from the individual pieces as in this example:

Because many app components need the FormsModule and the TitleCasePipe , the developer

Setup with module imports

created a SharedModule to combine these and other frequently requested parts. The test configuration can
use the SharedModule too as seen in this alternative setup:

It's a bit tighter and smaller, with fewer import statements (not shown).

{@a feature-module-import}

The HeroDetailComponent is part of the HeroModule Feature Module that aggregates more of the
interdependent pieces including the SharedModule . Try a test configuration that imports the
HeroModule like this one:

That's really crisp. Only the test doubles in the providers remain. Even the HeroDetailComponent

declaration is gone.

In fact, if you try to declare it, Angular throws an error because `HeroDetailComponent` is declared in both the
`HeroModule` and the `DynamicTestModule` (the testing module).
Importing the component's feature module is often the easiest way to configure the tests, especially when the
feature module is small and mostly self-contained, as feature modules should be.

{@a component-override}

The HeroDetailComponent provides its own HeroDetailService .

It's not possible to stub the component's HeroDetailService in the providers of the
TestBed.configureTestingModule . Those are providers for the testing module, not the component.

They prepare the dependency injector at the fixture level.

Angular creates the component with its own injector, which is a child of the fixture injector. It registers the
component's providers (the HeroDetailService in this case) with the child injector. A test cannot get to
child injector services from the fixture injector. And TestBed.configureTestingModule can't configure
them either.

Angular has been creating new instances of the real HeroDetailService all along!

These tests could fail or timeout if the `HeroDetailService` made its own XHR calls to a remote server. There
might not be a remote server to call. Fortunately, the `HeroDetailService` delegates responsibility for remote
data access to an injected `HeroService`. The [previous test configuration](guide/testing#feature-module-

Import the feature module

Override a component's providers

import) replaces the real `HeroService` with a `FakeHeroService` that intercepts server requests and fakes
their responses.

What if you aren't so lucky. What if faking the HeroService is hard? What if HeroDetailService

makes its own server requests?

The TestBed.overrideComponent method can replace the component's providers with easy-to-
manage test doubles as seen in the following setup variation:

Notice that TestBed.configureTestingModule no longer provides a (fake) HeroService because
it's not needed.

{@a override-component-method}

Focus on the overrideComponent method.

It takes two arguments: the component type to override (HeroDetailComponent) and an override
metadata object. The overide metadata object is a generic defined as follows:

type MetadataOverride = { add?: T; remove?: T; set?: T; };

A metadata override object can either add-and-remove elements in metadata properties or completely reset
those properties. This example resets the component's providers metadata.

The type parameter, T , is the kind of metadata you'd pass to the @Component decorator:

selector?: string; template?: string; templateUrl?: string; providers?: any[]; ...

{@a spy-stub}

This example completely replaces the component's providers array with a new array containing a
HeroDetailServiceSpy .

The HeroDetailServiceSpy is a stubbed version of the real HeroDetailService that fakes all
necessary features of that service. It neither injects nor delegates to the lower level HeroService so
there's no need to provide a test double for that.

The related HeroDetailComponent tests will assert that methods of the HeroDetailService were
called by spying on the service methods. Accordingly, the stub implements its methods as spies:

The overrideComponent method

Provide a spy stub (HeroDetailServiceSpy)

{@a override-tests}

Now the tests can control the component's hero directly by manipulating the spy-stub's testHero and
confirm that service methods were called.

{@a more-overrides}

The TestBed.overrideComponent method can be called multiple times for the same or different
components. The TestBed offers similar overrideDirective , overrideModule , and
overridePipe methods for digging into and replacing parts of these other classes.

Explore the options and combinations on your own.

{@a router-outlet-component}

The AppComponent displays routed components in a <router-outlet> . It also displays a navigation
bar with anchors and their RouterLink directives.

{@a app-component-html}

The component class does nothing.

Unit tests can confirm that the anchors are wired properly without engaging the router. See why this is worth
doing below.

{@a stub-component}

The test setup should look familiar.

The AppComponent is the declared test subject.

The setup extends the default testing module with one real component (BannerComponent) and several
stubs.

The override tests

More overrides

Test a RouterOutlet component

Stubbing unneeded components

BannerComponent is simple and harmless to use as is.

The real WelcomeComponent has an injected service. WelcomeStubComponent is a placeholder
with no service to worry about.

The real RouterOutlet is complex and errors easily. The RouterOutletStubComponent (in
testing/router-stubs.ts) is safely inert.

The component stubs are essential. Without them, the Angular compiler doesn't recognize the
<app-welcome> and <router-outlet> tags and throws an error.

{@a router-link-stub}

The RouterLinkStubDirective contributes substantively to the test:

The host metadata property wires the click event of the host element (the <a>) to the directive's
onClick method. The URL bound to the [routerLink] attribute flows to the directive's
linkParams property. Clicking the anchor should trigger the onClick method which sets the telltale
navigatedTo property. Tests can inspect that property to confirm the expected click-to-navigation behavior.

{@a by-directive}

{@a inject-directive}

A little more setup triggers the initial data binding and gets references to the navigation links:

Two points of special interest:

1. You can locate elements by directive, using By.directive , not just by css selectors.

2. You can use the component's dependency injector to get an attached directive because Angular always
adds attached directives to the component's injector.

{@a app-component-tests}

Here are some tests that leverage this setup:

The "click" test _in this example_ is worthless. It works hard to appear useful when in fact it tests the
`RouterLinkStubDirective` rather than the _component_. This is a common failing of directive stubs. It has a

Stubbing the RouterLink

By.directive and injected directives

legitimate purpose in this guide. It demonstrates how to find a `RouterLink` element, click it, and inspect a
result, without engaging the full router machinery. This is a skill you may need to test a more sophisticated
component, one that changes the display, re-calculates parameters, or re-arranges navigation options when
the user clicks the link.

{@a why-stubbed-routerlink-tests}

Stubbed RouterLink tests can confirm that a component with links and an outlet is setup properly, that the
component has the links it should have, and that they are all pointing in the expected direction. These tests do
not concern whether the app will succeed in navigating to the target component when the user clicks a link.

Stubbing the RouterLink and RouterOutlet is the best option for such limited testing goals. Relying on the real
router would make them brittle. They could fail for reasons unrelated to the component. For example, a
navigation guard could prevent an unauthorized user from visiting the HeroListComponent . That's not the
fault of the AppComponent and no change to that component could cure the failed test.

A different battery of tests can explore whether the application navigates as expected in the presence of
conditions that influence guards such as whether the user is authenticated and authorized.

A future guide update will explain how to write such tests with the `RouterTestingModule`.

{@a shallow-component-test}

The previous setup declared the BannerComponent and stubbed two other components for no reason
other than to avoid a compiler error.

Without them, the Angular compiler doesn't recognize the <app-banner> , <app-welcome> and
<router-outlet> tags in the app.component.html template and throws an error.

Add NO_ERRORS_SCHEMA to the testing module's schemas metadata to tell the compiler to ignore
unrecognized elements and attributes. You no longer have to declare irrelevant components and directives.

These tests are shallow because they only "go deep" into the components you want to test.

Here is a setup, with import statements, that demonstrates the improved simplicity of shallow tests, relative
to the stubbing setup.

What good are these tests?

"Shallow component tests" with NO_ERRORS_SCHEMA

The only declarations are the component-under-test (AppComponent) and the
RouterLinkStubDirective that contributes actively to the tests. The tests in this example are

unchanged.

Shallow component tests with `NO_ERRORS_SCHEMA` greatly simplify unit testing of complex templates.
However, the compiler no longer alerts you to mistakes such as misspelled or misused components and
directives.

{@a attribute-directive}

An attribute directive modifies the behavior of an element, component or another directive. Its name reflects the
way the directive is applied: as an attribute on a host element.

The sample application's HighlightDirective sets the background color of an element based on either
a data bound color or a default color (lightgray). It also sets a custom property of the element
(customProperty) to true for no reason other than to show that it can.

It's used throughout the application, perhaps most simply in the AboutComponent :

Testing the specific use of the HighlightDirective within the AboutComponent requires only the
techniques explored above (in particular the "Shallow test" approach).

However, testing a single use case is unlikely to explore the full range of a directive's capabilities. Finding and
testing all components that use the directive is tedious, brittle, and almost as unlikely to afford full coverage.

Isolated unit tests might be helpful, but attribute directives like this one tend to manipulate the DOM. Isolated
unit tests don't touch the DOM and, therefore, do not inspire confidence in the directive's efficacy.

A better solution is to create an artificial test component that demonstrates all ways to apply the directive.

The ` ` case binds the `HighlightDirective` to the name of a color value in the input box.

Test an attribute directive

The initial value is the word "cyan" which should be the background color of the input box.

Here are some tests of this component:

A few techniques are noteworthy:

The By.directive predicate is a great way to get the elements that have this directive when their
element types are unknown.

The :not pseudo-class in By.css('h2:not([highlight])') helps find <h2> elements that
do not have the directive. By.css('*:not([highlight])') finds any element that does not have
the directive.

DebugElement.styles affords access to element styles even in the absence of a real browser,
thanks to the DebugElement abstraction. But feel free to exploit the nativeElement when that
seems easier or more clear than the abstraction.

Angular adds a directive to the injector of the element to which it is applied. The test for the default color
uses the injector of the second <h2> to get its HighlightDirective instance and its
defaultColor .

DebugElement.properties affords access to the artificial custom property that is set by the
directive.

{@a isolated-unit-tests}

Testing applications with the help of the Angular testing utilities is the main focus of this guide.

However, it's often more productive to explore the inner logic of application classes with isolated unit tests that
don't depend upon Angular. Such tests are often smaller and easier to read, write, and maintain.

They don't carry extra baggage:

Import from the Angular test libraries.
Configure a module.
Prepare dependency injection providers .
Call inject or async or fakeAsync .

They follow patterns familiar to test developers everywhere:

Isolated Unit Tests

Exhibit standard, Angular-agnostic testing techniques.
Create instances directly with new .
Substitute test doubles (stubs, spys, and mocks) for the real dependencies.

Write both kinds of tests
Good developers write both kinds of tests for the same application part, often in the same spec file. Write
simple _isolated_ unit tests to validate the part in isolation. Write _Angular_ tests to validate the part as it
interacts with Angular, updates the DOM, and collaborates with the rest of the application.

{@a isolated-service-tests}

Services are good candidates for isolated unit testing. Here are some synchronous and asynchronous unit
tests of the FancyService written without assistance from Angular testing utilities.

A rough line count suggests that these isolated unit tests are about 25% smaller than equivalent Angular tests.
That's telling but not decisive. The benefit comes from reduced setup and code complexity.

Compare these equivalent tests of FancyService.getTimeoutValue .

They have about the same line-count, but the Angular-dependent version has more moving parts including a
couple of utility functions (async and inject). Both approaches work and it's not much of an issue if
you're using the Angular testing utilities nearby for other reasons. On the other hand, why burden simple
service tests with added complexity?

Pick the approach that suits you.

{@a services-with-dependencies}

Services often depend on other services that Angular injects into the constructor. You can test these services
without the TestBed . In many cases, it's easier to create and inject dependencies by hand.

The DependentService is a simple example:

It delegates its only method, getValue , to the injected FancyService .

Here are several ways to test it.

The first test creates a FancyService with new and passes it to the DependentService constructor.

Services

Services with dependencies

However, it's rarely that simple. The injected service can be difficult to create or control. You can mock the
dependency, use a dummy value, or stub the pertinent service method with a substitute method that's easy to
control.

These isolated unit testing techniques are great for exploring the inner logic of a service or its simple
integration with a component class. Use the Angular testing utilities when writing tests that validate how a
service interacts with components within the Angular runtime environment.

{@a isolated-pipe-tests}

Pipes are easy to test without the Angular testing utilities.

A pipe class has one method, transform , that manipulates the input value into a transformed output value.
The transform implementation rarely interacts with the DOM. Most pipes have no dependence on Angular
other than the @Pipe metadata and an interface.

Consider a TitleCasePipe that capitalizes the first letter of each word. Here's a naive implementation with
a regular expression.

Anything that uses a regular expression is worth testing thoroughly. Use simple Jasmine to explore the
expected cases and the edge cases.

{@a write-tests}

These are tests of the pipe in isolation. They can't tell if the TitleCasePipe is working properly as applied
in the application components.

Consider adding component tests such as this one:

{@a isolated-component-tests}

Component tests typically examine how a component class interacts with its own template or with collaborating
components. The Angular testing utilities are specifically designed to facilitate such tests.

Consider this ButtonComp component.

Pipes

Write Angular tests too

Components

The following Angular test demonstrates that clicking a button in the template leads to an update of the on-
screen message.

The assertions verify that the data values flow from one HTML control (the <button>) to the component
and from the component back to a different HTML control (the). A passing test means the
component and its template are wired correctly.

Isolated unit tests can more rapidly probe a component at its API boundary, exploring many more conditions
with less effort.

Here are a set of unit tests that verify the component's outputs in the face of a variety of component inputs.

Isolated component tests offer a lot of test coverage with less code and almost no setup. This is even more of
an advantage with complex components, which may require meticulous preparation with the Angular testing
utilities.

On the other hand, isolated unit tests can't confirm that the ButtonComp is properly bound to its template or
even data bound at all. Use Angular tests for that.

{@a atu-apis}

This section takes inventory of the most useful Angular testing features and summarizes what they do.

The Angular testing utilities include the TestBed , the ComponentFixture , and a handful of functions
that control the test environment. The TestBed and ComponentFixture classes are covered separately.

Here's a summary of the stand-alone functions, in order of likely utility:

Function Description

async Runs the body of a test (`it`) or setup (`beforeEach`) function
within a special _async test zone_. See [discussion above]
(guide/testing#async).

fakeAsync Runs the body of a test (`it`) within a special _fakeAsync test
zone_, enabling a linear control flow coding style. See
[discussion above](guide/testing#fake-async).

tick Simulates the passage of time and the completion of pending

Angular testing utility APIs

asynchronous activities by flushing both _timer_ and _micro-
task_ queues within the _fakeAsync test zone_.
The curious, dedicated reader might enjoy this lengthy blog
post, ["_Tasks, microtasks, queues and schedules_"]
(https://jakearchibald.com/2015/tasks-microtasks-queues-and-
schedules/).
Accepts an optional argument that moves the virtual clock
forward by the specified number of milliseconds, clearing
asynchronous activities scheduled within that timeframe. See
[discussion above](guide/testing#tick).

inject Injects one or more services from the current `TestBed` injector
into a test function. See [above](guide/testing#inject).

discardPeriodicTasks When a `fakeAsync` test ends with pending timer event _tasks_
(queued `setTimeOut` and `setInterval` callbacks), the test fails
with a clear error message. In general, a test should end with no
queued tasks. When pending timer tasks are expected, call
`discardPeriodicTasks` to flush the _task_ queue and avoid the
error.

flushMicrotasks When a `fakeAsync` test ends with pending _micro-tasks_ such
as unresolved promises, the test fails with a clear error
message. In general, a test should wait for micro-tasks to finish.
When pending microtasks are expected, call `flushMicrotasks`
to flush the _micro-task_ queue and avoid the error.

ComponentFixtureAutoDetect A provider token for a service that turns on [automatic change
detection](guide/testing#automatic-change-detection).

getTestBed Gets the current instance of the `TestBed`. Usually unnecessary
because the static class methods of the `TestBed` class are
typically sufficient. The `TestBed` instance exposes a few rarely
used members that are not available as static methods.

{@a testbed-class-summary}

The TestBed class is one of the principal Angular testing utilities. Its API is quite large and can be

TestBed class summary

overwhelming until you've explored it, a little at a time. Read the early part of this guide first to get the basics
before trying to absorb the full API.

The module definition passed to configureTestingModule is a subset of the @NgModule metadata
properties.

type TestModuleMetadata = { providers?: any[]; declarations?: any[]; imports?: any[]; schemas?:
Array<SchemaMetadata | any[]>; };

{@a metadata-override-object}

Each override method takes a MetadataOverride<T> where T is the kind of metadata appropriate to
the method, that is, the parameter of an @NgModule , @Component , @Directive , or @Pipe .

type MetadataOverride = { add?: T; remove?: T; set?: T; };

{@a testbed-methods} {@a testbed-api-summary}

The TestBed API consists of static class methods that either update or reference a global instance of
the TestBed .

Internally, all static methods cover methods of the current runtime TestBed instance, which is also returned
by the getTestBed() function.

Call TestBed methods within a beforeEach() to ensure a fresh start before each individual test.

Here are the most important static methods, in order of likely utility.

Methods Description

configureTestingModule The testing shims (`karma-test-shim`, `browser-test-shim`) establish
the [initial test environment](guide/testing) and a default testing
module. The default testing module is configured with basic
declaratives and some Angular service substitutes that every tester
needs. Call `configureTestingModule` to refine the testing module
configuration for a particular set of tests by adding and removing
imports, declarations (of components, directives, and pipes), and
providers.

compileComponents Compile the testing module asynchronously after you've finished
configuring it. You **must** call this method if _any_ of the testing
module components have a `templateUrl` or `styleUrls` because
fetching component template and style files is necessarily

asynchronous. See [above](guide/testing#compile-components). After
calling `compileComponents`, the `TestBed` configuration is frozen for
the duration of the current spec.

createComponent Create an instance of a component of type `T` based on the current
`TestBed` configuration. After calling `compileComponent`, the
`TestBed` configuration is frozen for the duration of the current spec.

overrideModule Replace metadata for the given `NgModule`. Recall that modules can
import other modules. The `overrideModule` method can reach
deeply into the current testing module to modify one of these inner
modules.

overrideComponent Replace metadata for the given component class, which could be
nested deeply within an inner module.

overrideDirective Replace metadata for the given directive class, which could be nested
deeply within an inner module.

overridePipe Replace metadata for the given pipe class, which could be nested
deeply within an inner module.

{@a testbed-get} get Retrieve a service from the current `TestBed` injector. The `inject`
function is often adequate for this purpose. But `inject` throws an
error if it can't provide the service. What if the service is optional? The
`TestBed.get` method takes an optional second parameter, the object
to return if Angular can't find the provider (`null` in this example): After
calling `get`, the `TestBed` configuration is frozen for the duration of
the current spec.

{@a testbed-
initTestEnvironment}
initTestEnvironment

Initialize the testing environment for the entire test run. The testing
shims (`karma-test-shim`, `browser-test-shim`) call it for you so there
is rarely a reason for you to call it yourself. You may call this method
exactly once. If you must change this default in the middle of your
test run, call `resetTestEnvironment` first. Specify the Angular
compiler factory, a `PlatformRef`, and a default Angular testing
module. Alternatives for non-browser platforms are available in the
general form `@angular/platform-/testing/`.

resetTestEnvironment Reset the initial test environment, including the default testing
module.

A few of the TestBed instance methods are not covered by static TestBed class methods. These are
rarely needed.

{@a component-fixture-api-summary}

The TestBed.createComponent<T> creates an instance of the component T and returns a strongly
typed ComponentFixture for that component.

The ComponentFixture properties and methods provide access to the component, its DOM
representation, and aspects of its Angular environment.

{@a component-fixture-properties}

Here are the most important properties for testers, in order of likely utility.

Properties Description

componentInstance The instance of the component class created by
`TestBed.createComponent`.

debugElement The `DebugElement` associated with the root element of the component.
The `debugElement` provides insight into the component and its DOM
element during test and debugging. It's a critical property for testers. The
most interesting members are covered [below](guide/testing#debug-
element-details).

nativeElement The native DOM element at the root of the component.

changeDetectorRef The `ChangeDetectorRef` for the component. The `ChangeDetectorRef` is
most valuable when testing a component that has the
`ChangeDetectionStrategy.OnPush` method or the component's change
detection is under your programmatic control.

{@a component-fixture-methods}

The fixture methods cause Angular to perform certain tasks on the component tree. Call these method to

The ComponentFixture

ComponentFixture properties

ComponentFixture methods

trigger Angular behavior in response to simulated user action.

Here are the most useful methods for testers.

Methods Description

detectChanges Trigger a change detection cycle for the component. Call it to initialize the
component (it calls `ngOnInit`) and after your test code, change the
component's data bound property values. Angular can't see that you've
changed `personComponent.name` and won't update the `name` binding
until you call `detectChanges`. Runs `checkNoChanges`afterwards to
confirm that there are no circular updates unless called as
`detectChanges(false)`;

autoDetectChanges Set this to `true` when you want the fixture to detect changes automatically.
When autodetect is `true`, the test fixture calls `detectChanges` immediately
after creating the component. Then it listens for pertinent zone events and
calls `detectChanges` accordingly. When your test code modifies component
property values directly, you probably still have to call
`fixture.detectChanges` to trigger data binding updates. The default is
`false`. Testers who prefer fine control over test behavior tend to keep it
`false`.

checkNoChanges Do a change detection run to make sure there are no pending changes.
Throws an exceptions if there are.

isStable If the fixture is currently _stable_, returns `true`. If there are async tasks that
have not completed, returns `false`.

whenStable Returns a promise that resolves when the fixture is stable. To resume testing
after completion of asynchronous activity or asynchronous change detection,
hook that promise. See [above](guide/testing#when-stable).

destroy Trigger component destruction.

{@a debug-element-details}

The DebugElement provides crucial insights into the component's DOM representation.

From the test root component's DebugElement returned by fixture.debugElement , you can walk

DebugElement

(and query) the fixture's entire element and component subtrees.

Here are the most useful DebugElement members for testers, in approximate order of utility:

Member Description

nativeElement The corresponding DOM element in the browser (null for WebWorkers).

query Calling `query(predicate: Predicate)` returns the first `DebugElement` that
matches the [predicate](guide/testing#query-predicate) at any depth in
the subtree.

queryAll Calling `queryAll(predicate: Predicate)` returns all `DebugElements` that
matches the [predicate](guide/testing#query-predicate) at any depth in
subtree.

injector The host dependency injector. For example, the root element's
component instance injector.

componentInstance The element's own component instance, if it has one.

context An object that provides parent context for this element. Often an ancestor
component instance that governs this element. When an element is
repeated within `*ngFor`, the context is an `NgForRow` whose `$implicit`
property is the value of the row instance value. For example, the `hero` in
`*ngFor="let hero of heroes"`.

children The immediate `DebugElement` children. Walk the tree by descending
through `children`.
`DebugElement` also has `childNodes`, a list of `DebugNode` objects.
`DebugElement` derives from `DebugNode` objects and there are often
more nodes than elements. Testers can usually ignore plain nodes.

parent The `DebugElement` parent. Null if this is the root element.

name The element tag name, if it is an element.

triggerEventHandler Triggers the event by its name if there is a corresponding listener in the
element's `listeners` collection. The second parameter is the _event
object_ expected by the handler. See [above](guide/testing#trigger-event-
handler). If the event lacks a listener or there's some other problem,
consider calling `nativeElement.dispatchEvent(eventObject)`.

listeners The callbacks attached to the component's `@Output` properties and/or

the element's event properties.

providerTokens This component's injector lookup tokens. Includes the component itself
plus the tokens that the component lists in its `providers` metadata.

source Where to find this element in the source component template.

references Dictionary of objects associated with template local variables (e.g. `#foo`),
keyed by the local variable name.

{@a query-predicate}

The DebugElement.query(predicate) and DebugElement.queryAll(predicate) methods
take a predicate that filters the source element's subtree for matching DebugElement .

The predicate is any method that takes a DebugElement and returns a truthy value. The following example
finds all DebugElements with a reference to a template local variable named "content":

The Angular By class has three static methods for common predicates:

By.all - return all elements.
By.css(selector) - return elements with matching CSS selectors.
By.directive(directive) - return elements that Angular matched to an instance of the directive

class.

{@a setup-files}

Unit testing requires some configuration and bootstrapping that is captured in setup files. The setup files for this
guide are provided for you when you follow the Setup instructions. The CLI delivers similar files with the same
purpose.

Here's a brief description of this guide's setup files:

The deep details of these files and how to reconfigure them for your needs is a topic beyond the scope of this
guide .

Test environment setup files

File Description

karma.conf.js The karma configuration file that specifies which plug-ins to use,
which application and test files to load, which browser(s) to use,
and how to report test results. It loads three other setup files: *
`systemjs.config.js` * `systemjs.config.extras.js` * `karma-test-
shim.js`

karma-test-shim.js This shim prepares karma specifically for the Angular test
environment and launches karma itself. It loads the
`systemjs.config.js` file as part of that process.

systemjs.config.js [SystemJS]
(https://github.com/systemjs/systemjs/blob/master/README.md)
loads the application and test files. This script tells SystemJS
where to find those files and how to load them. It's the same
version of `systemjs.config.js` you installed during [setup]
(guide/testing#setup).

systemjs.config.extras.js An optional file that supplements the SystemJS configuration in
`systemjs.config.js` with configuration for the specific needs of the
application itself. A stock `systemjs.config.js` can't anticipate
those needs. You fill the gaps here. The sample version for this
guide adds the **model barrel** to the SystemJs `packages`
configuration.

The sample tests are written to run in Jasmine and karma. The two "fast path" setups added the appropriate
Jasmine and karma npm packages to the devDependencies section of the package.json . They're
installed when you run npm install .

FAQ: Frequently Asked Questions

It's a good idea to put unit test spec files in the same folder as the application source code files that they test:

Such tests are easy to find.
You see at a glance if a part of your application lacks tests.
Nearby tests can reveal how a part works in context.

npm packages

Why put specs next to the things they test?

When you move the source (inevitable), you remember to move the test.
When you rename the source file (inevitable), you remember to rename the test file.

Application integration specs can test the interactions of multiple parts spread across folders and modules.
They don't really belong to any part in particular, so they don't have a natural home next to any one file.

It's often better to create an appropriate folder for them in the tests directory.

Of course specs that test the test helpers belong in the test folder, next to their corresponding helper files.

When would I put specs in a test folder?

TypeScript is a primary language for Angular application development. It is a superset of JavaScript with
design-time support for type safety and tooling.

Browsers can't execute TypeScript directly. Typescript must be "transpiled" into JavaScript using the tsc
compiler, which requires some configuration.

This page covers some aspects of TypeScript configuration and the TypeScript environment that are important
to Angular developers, including details about the following files:

tsconfig.json—TypeScript compiler configuration.
typings—TypesScript declaration files.

{@a tsconfig}

Typically, you add a TypeScript configuration file called tsconfig.json to your project to guide the
compiler as it generates JavaScript files.

For details about `tsconfig.json`, see the official [TypeScript wiki]
(http://www.typescriptlang.org/docs/handbook/tsconfig-json.html).

The Setup guide uses the following tsconfig.json :

This file contains options and flags that are essential for Angular applications.

{@a noImplicitAny}

TypeScript developers disagree about whether the noImplicitAny flag should be true or false .
There is no correct answer and you can change the flag later. But your choice now can make a difference in
larger projects, so it merits discussion.

When the noImplicitAny flag is false (the default), and if the compiler cannot infer the variable type
based on how it's used, the compiler silently defaults the type to any . That's what is meant by implicit
any .

TypeScript Configuration

tsconfig.json

noImplicitAny and suppressImplicitAnyIndexErrors

The documentation setup sets the noImplicitAny flag to true . When the noImplicitAny flag is
true and the TypeScript compiler cannot infer the type, it still generates the JavaScript files, but it also

reports an error. Many seasoned developers prefer this stricter setting because type checking catches more
unintentional errors at compile time.

You can set a variable's type to any even when the noImplicitAny flag is true .

When the noImplicitAny flag is true , you may get implicit index errors as well. Most developers feel
that this particular error is more annoying than helpful. You can suppress them with the following additional flag:

"suppressImplicitAnyIndexErrors":true

The documentation setup sets this flag to true as well.

{@a typings}

Many JavaScript libraries, such as jQuery, the Jasmine testing library, and Angular, extend the JavaScript
environment with features and syntax that the TypeScript compiler doesn't recognize natively. When the
compiler doesn't recognize something, it throws an error.

Use TypeScript type definition files— d.ts files —to tell the compiler about the libraries you load.

TypeScript-aware editors leverage these same definition files to display type information about library features.

Many libraries include definition files in their npm packages where both the TypeScript compiler and editors can
find them. Angular is one such library. The node_modules/@angular/core/ folder of any Angular
application contains several d.ts files that describe parts of Angular.

You need do nothing to get typings files for library packages that include d.ts files. Angular
packages include them already.

TypeScript includes a special declaration file called lib.d.ts . This file contains the ambient declarations
for various common JavaScript constructs present in JavaScript runtimes and the DOM.

Based on the --target , TypeScript adds additional ambient declarations like Promise if the target is
es6 .

Since the QuickStart is targeting es5 , you can override the list of declaration files to be included:

TypeScript Typings

lib.d.ts

"lib": ["es2015", "dom"]

Thanks to that, you have all the es6 typings even when targeting es5 .

Many libraries—jQuery, Jasmine, and Lodash among them—do not include d.ts files in their npm
packages. Fortunately, either their authors or community contributors have created separate d.ts files for
these libraries and published them in well-known locations.

You can install these typings via npm using the @types/* scoped package and Typescript, starting at 2.0,
automatically recognizes them.

For instance, to install typings for jasmine you could do
npm install @types/jasmine --save-dev .

QuickStart identifies two typings, or d.ts , files:

jasmine typings for the Jasmine test framework.

node for code that references objects in the nodejs environment; you can view an example in the webpack
page.

QuickStart doesn't require these typings but many of the samples do.

Installable typings files

This guide describes Angular Universal, a technology that runs your Angular application on the server.

A normal Angular application executes in the browser, rendering pages in the DOM in response to user actions.

Angular Universal generates static application pages on the server through a process called server-side
rendering (SSR).

It can generate and serve those pages in response to requests from browsers. It can also pre-generate pages
as HTML files that you serve later.

This guide describes a Universal sample application that launches quickly as a server-rendered page.
Meanwhile, the browser downloads the full client version and switches to it automatically after the code loads.

[Download the finished sample code](generated/zips/universal/universal.zip), which runs in a [node express]
(https://expressjs.com/) server.

{@a why-do-it}

There are three main reasons to create a Universal version of your app.

1. Facilitate web crawlers (SEO)
2. Improve performance on mobile and low-powered devices
3. Show the first page quickly

{@a seo} {@a web-crawlers}

Google, Bing, Facebook, Twitter and other social media sites rely on web crawlers to index your application
content and make that content searchable on the web.

These web crawlers may be unable to navigate and index your highly-interactive, Angular application as a
human user could do.

Angular Universal can generate a static version of your app that is easily searchable, linkable, and navigable
without JavaScript. It also makes a site preview available since each URL returns a fully-rendered page.

Angular Universal: server-side rendering

Why Universal

Facilitate web crawlers

Enabling web crawlers is often referred to as Search Engine Optimization (SEO).

{@a no-javascript}

Some devices don't support JavaScript or execute JavaScript so poorly that the user experience is
unacceptable. For these cases, you may require a server-rendered, no-JavaScript version of the app. This
version, however limited, may be the only practical alternative for people who otherwise would not be able to
use the app at all.

{@a startup-performance}

Displaying the first page quickly can be critical for user engagement.

53% of mobile site visits are abandoned if pages take longer than 3 seconds to load. Your app may have to
launch faster to engage these users before they decide to do something else.

With Angular Universal, you can generate landing pages for the app that look like the complete app. The pages
are pure HTML, and can display even if JavaScript is disabled. The pages do not handle browser events, but
they do support navigation through the site using routerLink.

In practice, you'll serve a static version of the landing page to hold the user's attention. At the same time, you'll
load the full Angular app behind it in the manner explained below. The user perceives near-instant performance
from the landing page and gets the full interactive experience after the full app loads.

{@a how-does-it-work}

To make a Universal app, you install the platform-server package. The platform-server package
has server implementations of the DOM, XMLHttpRequest , and other low-level features that do not rely on
a browser.

You compile the client application with the platform-server module instead of the
platform-browser module. and run the resulting Universal app on a web server.

The server (a Node Express server in this guide's example) passes client requests for application pages to
Universal's renderModuleFactory function.

Performance on mobile and low performance devices

Show the first page quickly

How it works

The renderModuleFactory function takes as inputs a template HTML page (usually index.html), an
Angular module containing components, and a route that determines which components to display.

The route comes from the client's request to the server. Each request results in the appropriate view for the
requested route.

The renderModuleFactory renders that view within the <app> tag of the template, creating a finished
HTML page for the client.

Finally, the server returns the rendered page to the client.

Because a Universal platform-server app doesn't execute in the browser, you may have to work around
some of the browser APIs and capabilities that are missing on the server.

You won't be able reference browser-only native objects such as window , document , navigator or
location . If you don't need them on the server-rendered page, side-step them with conditional logic.

Alternatively, look for an injectable Angular abstraction over the object you need such as Location or
Document ; it may substitute adequately for the specific API that you're calling. If Angular doesn't provide it,

you may be able to write your own abstraction that delegates to the browser API while in the browser and to a
satisfactory alternative implementation while on the server.

Without mouse or keyboard events, a universal app can't rely on a user clicking a button to show a component.
A universal app should determine what to render based solely on the incoming client request. This is a good
argument for making the app routeable.

Because the user of a server-rendered page can't do much more than click links, you should swap in the real
client app as quickly as possible for a proper interactive experience.

{@a the-example}

The Tour of Heroes tutorial is the foundation for the Universal sample described in this guide.

The core application files are mostly untouched, with a few exceptions described below. You'll add more files to
support building and serving with Universal.

In this example, the Angular CLI compiles and bundles the Universal version of the app with the AOT (Ahead-
of-Time) compiler. A node/express web server turns client requests into the HTML pages rendered by

Working around the browser APIs

The example

Universal.

You will create:

a server-side app module, app.server.module.ts

an entry point for the server-side, main.server.ts

an express web server to handle requests, server.ts

a TypeScript config file, tsconfig.server.json

a Webpack config file for the server, webpack.server.config.js

When you're done, the folder structure will look like this:

src/ index.html app web page main.ts bootstrapper for client app main.server.ts * bootstrapper for server app
tsconfig.app.json TypeScript client configuration tsconfig.server.json * TypeScript server configuration
tsconfig.spec.json TypeScript spec configuration style.css styles for the app app/ ... application code
app.server.module.ts * server-side application module server.ts * express web server tsconfig.json TypeScript
client configuration package.json npm configuration webpack.server.config.js * Webpack server configuration

The files marked with * are new and not in the original tutorial sample. This guide covers them in the
sections below.

{@a preparation}

Download the Tour of Heroes project and install the dependencies from it.

{@a install-the-tools}

To get started, install these packages.

@angular/platform-server - Universal server-side components.
@nguniversal/module-map-ngfactory-loader - For handling lazy-loading in the context of a

server-render.
@nguniversal/express-engine - An express engine for Universal applications.
ts-loader - To transpile the server application

Install them with the following commands:

npm install --save @angular/platform-server @nguniversal/module-map-ngfactory-loader ts-loader

Preparation

Install the tools

@nguniversal/express-engine

{@a transition}

A Universal app can act as a dynamic, content-rich "splash screen" that engages the user. It gives the
appearance of a near-instant application.

Meanwhile, the browser downloads the client app scripts in background. Once loaded, Angular transitions from
the static server-rendered page to the dynamically rendered views of the interactive client app.

You must make a few changes to your application code to support both server-side rendering and the transition
to the client app.

Open file src/app/app.module.ts and find the BrowserModule import in the NgModule

metadata. Replace that import with this one:

Angular adds the appId value (which can be any string) to the style-names of the server-rendered pages,
so that they can be identified and removed when the client app starts.

You can get runtime information about the current platform and the appId by injection.

{@a http-urls}

The tutorial's HeroService and HeroSearchService delegate to the Angular Http module to fetch
application data. These services send requests to relative URLs such as api/heroes .

In a Universal app, Http URLs must be absolute (e.g., https://my-server.com/api/heroes) even
when the Universal web server is capable of handling those requests.

You'll have to change the services to make requests with absolute URLs when running on the server and with
relative URLs when running in the browser.

One solution is to provide the server's runtime origin under the Angular APP_BASE_REF token, inject it into
the service, and prepend the origin to the request URL.

Start by changing the HeroService constructor to take a second origin parameter that is optionally
injected via the APP_BASE_HREF token.

Modify the client app

The root AppModule

Absolute HTTP URLs

Note how the constructor prepends the origin (if it exists) to the heroesUrl .

You don't provide APP_BASE_HREF in the browser version, so the heroesUrl remains relative.

You can ignore `APP_BASE_HREF` in the browser if you've specified `` in the `index.html` to satisfy the
router's need for a base address, as the tutorial sample does.

{@a server-code}

To run an Angular Universal application, you'll need a server that accepts client requests and returns rendered
pages.

{@a app-server-module}

The app server module class (conventionally named AppServerModule) is an Angular module that wraps
the application's root module (AppModule) so that Universal can mediate between your application and the
server. AppServerModule also tells Angular how to bootstrap your application when running as a Universal
app.

Create an app.server.module.ts file in the src/app/ directory with the following
AppServerModule code:

Notice that it imports first the client app's AppModule , the Angular Universal's ServerModule and the
ModuleMapLoaderModule .

The ModuleMapLoaderModule is a server-side module that allows lazy-loading of routes.

This is also the place to register providers that are specific to running your app under Universal.

{@a web-server}

A Universal web server responds to application page requests with static HTML rendered by the Universal
template engine.

It receives and responds to HTTP requests from clients (usually browsers). It serves static assets such as
scripts, css, and images. It may respond to data requests, perhaps directly or as a proxy to a separate data

Server code

App server module

Universal web server

server.

The sample web server for this guide is based on the popular Express framework.

Any web server technology can serve a Universal app as long as it can call Universal's
`renderModuleFactory`. The principles and decision points discussed below apply to any web server
technology that you chose.

Create a server.ts file in the root directory and add the following code:

This sample server is not secure! Be sure to add middleware to authenticate and authorize users just as
you would for a normal Angular application server.

{@a universal-engine}

The important bit in this file is the ngExpressEngine function:

The ngExpressEngine is a wrapper around the universal's renderModuleFactory function that turns
a client's requests into server-rendered HTML pages. You'll call that function within a template engine that's
appropriate for your server stack.

The first parameter is the AppServerModule that you wrote earlier. It's the bridge between the Universal
server-side renderer and your application.

The second parameter is the extraProviders . It is an optional Angular dependency injection providers,
applicable when running on this server.

{@a provide-origin}

You supply extraProviders when your app needs information that can only be determined by the
currently running server instance.

The required information in this case is the running server's origin, provided under the APP_BASE_HREF

token, so that the app can calculate absolute HTTP URLs.

The ngExpressEngine function returns a promise that resolves to the rendered page.

It's up to your engine to decide what to do with that page. This engine's promise callback returns the rendered
page to the web server, which then forwards it to the client in the HTTP response.

This wrappers are very useful to hide the complexity of the `renderModuleFactory`. There are more wrappers
for different backend technologies at the [Universal repository](https://github.com/angular/universal).

Universal template engine

The web server must distinguish app page requests from other kinds of requests.

It's not as simple as intercepting a request to the root address / . The browser could ask for one of the
application routes such as /dashboard , /heroes , or /detail:12 . In fact, if the app were only
rendered by the server, every app link clicked would arrive at the server as a navigation URL intended for the
router.

Fortunately, application routes have something in common: their URLs lack file extensions.

Data requests also lack extensions but they're easy to recognize because they always begin with /api .

All static asset requests have a file extension (e.g., main.js or
/node_modules/zone.js/dist/zone.js).

So we can easily recognize the three types of requests and handle them differently.

1. data request - request URL that begins /api

2. app navigation - request URL with no file extension
3. static asset - all other requests.

An Express server is a pipeline of middleware that filters and processes URL requests one after the other.

You configure the Express server pipeline with calls to app.get() like this one for data requests.

This sample server doesn't handle data requests. The tutorial's "in-memory web api" module, a demo and
development tool, intercepts all HTTP calls and simulates the behavior of a remote data server. In practice, you
would remove that module and register your web api middleware on the server here.
Universal HTTP requests have different security requirements HTTP requests issued from a browser app
are not the same as when issued by the universal app on the server. When a browser makes an HTTP request,
the server can make assumptions about cookies, XSRF headers, etc. For example, the browser automatically
sends auth cookies for the current user. Angular Universal cannot forward these credentials to a separate data
server. If your server handles HTTP requests, you'll have to add your own security plumbing.

The following code filters for request URLs with no extensions and treats them as navigation requests.

A single app.use() treats all other URLs as requests for static assets such as JavaScript, image, and style
files.

To ensure that clients can only download the files that they are permitted to see, you will put all client-facing

Filter request URLs

Serve static files safely

asset files in the /dist folder and will only honor requests for files from the /dist folder.

The following express code routes all remaining requests to /dist ; it returns a 404 - NOT FOUND if the
file is not found.

{@a universal-configuration}

The server application requires its own build configuration.

{@a universal-typescript-configuration}

Create a tsconfig.server.json file in the project root directory to configure TypeScript and AOT
compilation of the universal app.

This config extends from the root's tsconfig.json file. Certain settings are noteworthy for their
differences.

The module property must be commonjs which can be require()'d into our server application.

The angularCompilerOptions section guides the AOT compiler:

entryModule - the root module of the server application, expressed as
path/to/file#ClassName .

Universal applications doesn't need any extra Webpack configuration, the CLI takes care of that for you, but
since the server is a typescript application, you will use Webpack to transpile it.

Create a webpack.server.config.js file in the project root directory with the following code.

Webpack configuration is a rich topic beyond the scope of this guide.

Now that you've created the TypeScript and Webpack config files, you can build and run the Universal
application.

Configure for Universal

Universal TypeScript configuration

Universal Webpack configuration

Build and run with universal

First add the build and serve commands to the scripts section of the package.json :

"scripts": { ... "build:universal": "npm run build:client-and-server-bundles && npm run webpack:server",
"serve:universal": "node dist/server.js", "build:client-and-server-bundles": "ng build --prod && ng build --prod --
app 1 --output-hashing=false", "webpack:server": "webpack --config webpack.server.config.js --progress --
colors" ... }

{@a build}

From the command prompt, type

npm run build:universal

The Angular CLI compiles and bundles the universal app into two different folders, browser and server .
Webpack transpiles the server.ts file into Javascript.

{@a serve}

After building the application, start the server.

npm run serve:universal

The console window should say

Node server listening on http://localhost:4000

Open a browser to http://localhost:4000/. You should see the familiar Tour of Heroes dashboard page.

Navigation via routerLinks works correctly. You can go from the Dashboard to the Heroes page and back.
You can click on a hero on the Dashboard page to display its Details page.

But clicks, mouse-moves, and keyboard entries are inert.

Clicking a hero on the Heroes page does nothing.
You can't add or delete a hero.
The search box on the Dashboard page is ignored.
The back and save buttons on the Details page don't work.

Build

Serve

Universal in action

User events other than routerLink clicks aren't supported. The user must wait for the full client app to
arrive.

It will never arrive until you compile the client app and move the output into the dist/ folder, a step you'll
take in just a moment.

The transition from the server-rendered app to the client app happens quickly on a development machine. You
can simulate a slower network to see the transition more clearly and better appreciate the launch-speed
advantage of a universal app running on a low powered, poorly connected device.

Open the Chrome Dev Tools and go to the Network tab. Find the Network Throttling dropdown on the far right
of the menu bar.

Try one of the "3G" speeds. The server-rendered app still launches quickly but the full client app may take
seconds to load.

{@a summary}

This guide showed you how to take an existing Angular application and make it into a Universal app that does
server-side rendering. It also explained some of the key reasons for doing so.

Facilitate web crawlers (SEO)
Support low-bandwidth or low-power devices
Fast first page load

Angular Universal can greatly improve the perceived startup performance of your app. The slower the network,
the more advantageous it becomes to have Universal display the first page to the user.

Throttling

Summary

Angular is the name for the Angular of today and tomorrow. AngularJS is the name for all v1.x versions of
Angular.

AngularJS apps are great. Always consider the business case before moving to Angular. An important part of
that case is the time and effort to get there. This guide describes the built-in tools for efficiently migrating
AngularJS projects over to the Angular platform, a piece at a time.

Some applications will be easier to upgrade than others, and there are many ways to make it easier for
yourself. It is possible to prepare and align AngularJS applications with Angular even before beginning the
upgrade process. These preparation steps are all about making the code more decoupled, more maintainable,
and better aligned with modern development tools. That means in addition to making the upgrade easier, you
will also improve the existing AngularJS applications.

One of the keys to a successful upgrade is to do it incrementally, by running the two frameworks side by side in
the same application, and porting AngularJS components to Angular one by one. This makes it possible to
upgrade even large and complex applications without disrupting other business, because the work can be done
collaboratively and spread over a period of time. The upgrade module in Angular has been designed to
make incremental upgrading seamless.

There are many ways to structure AngularJS applications. When you begin to upgrade these applications to
Angular, some will turn out to be much more easy to work with than others. There are a few key techniques and
patterns that you can apply to future proof apps even before you begin the migration.

{@a follow-the-angular-styleguide}

The AngularJS Style Guide collects patterns and practices that have been proven to result in cleaner and more
maintainable AngularJS applications. It contains a wealth of information about how to write and organize
AngularJS code - and equally importantly - how not to write and organize AngularJS code.

Angular is a reimagined version of the best parts of AngularJS. In that sense, its goals are the same as the
AngularJS Style Guide's: To preserve the good parts of AngularJS, and to avoid the bad parts. There's a lot
more to Angular than just that of course, but this does mean that following the style guide helps make your

Upgrading from AngularJS

Preparation

Follow the AngularJS Style Guide

AngularJS app more closely aligned with Angular.

There are a few rules in particular that will make it much easier to do an incremental upgrade using the Angular
upgrade/static module:

The Rule of 1 states that there should be one component per file. This not only makes components easy
to navigate and find, but will also allow us to migrate them between languages and frameworks one at a
time. In this example application, each controller, component, service, and filter is in its own source file.

The Folders-by-Feature Structure and Modularity rules define similar principles on a higher level of
abstraction: Different parts of the application should reside in different directories and NgModules.

When an application is laid out feature per feature in this way, it can also be migrated one feature at a time. For
applications that don't already look like this, applying the rules in the AngularJS style guide is a highly
recommended preparation step. And this is not just for the sake of the upgrade - it is just solid advice in
general!

When you break application code down into one component per file, you often end up with a project structure
with a large number of relatively small files. This is a much neater way to organize things than a small number
of large files, but it doesn't work that well if you have to load all those files to the HTML page with <script> tags.
Especially when you also have to maintain those tags in the correct order. That's why it's a good idea to start
using a module loader.

Using a module loader such as SystemJS, Webpack, or Browserify allows us to use the built-in module
systems of TypeScript or ES2015. You can use the import and export features that explicitly specify
what code can and will be shared between different parts of the application. For ES5 applications you can use
CommonJS style require and module.exports features. In both cases, the module loader will then
take care of loading all the code the application needs in the correct order.

When moving applications into production, module loaders also make it easier to package them all up into
production bundles with batteries included.

If part of the Angular upgrade plan is to also take TypeScript into use, it makes sense to bring in the TypeScript
compiler even before the upgrade itself begins. This means there's one less thing to learn and think about
during the actual upgrade. It also means you can start using TypeScript features in your AngularJS code.

Since TypeScript is a superset of ECMAScript 2015, which in turn is a superset of ECMAScript 5, "switching" to

Using a Module Loader

Migrating to TypeScript

TypeScript doesn't necessarily require anything more than installing the TypeScript compiler and renaming files
from *.js to *.ts . But just doing that is not hugely useful or exciting, of course. Additional steps like the
following can give us much more bang for the buck:

For applications that use a module loader, TypeScript imports and exports (which are really ECMAScript
2015 imports and exports) can be used to organize code into modules.

Type annotations can be gradually added to existing functions and variables to pin down their types and
get benefits like build-time error checking, great autocompletion support and inline documentation.

JavaScript features new to ES2015, like arrow functions, let s and const s, default function
parameters, and destructuring assignments can also be gradually added to make the code more
expressive.

Services and controllers can be turned into classes. That way they'll be a step closer to becoming Angular
service and component classes, which will make life easier after the upgrade.

In Angular, components are the main primitive from which user interfaces are built. You define the different
portions of the UI as components and compose them into a full user experience.

You can also do this in AngularJS, using component directives. These are directives that define their own
templates, controllers, and input/output bindings - the same things that Angular components define.
Applications built with component directives are much easier to migrate to Angular than applications built with
lower-level features like ng-controller , ng-include , and scope inheritance.

To be Angular compatible, an AngularJS component directive should configure these attributes:

restrict: 'E' . Components are usually used as elements.
scope: {} - an isolate scope. In Angular, components are always isolated from their surroundings,

and you should do this in AngularJS too.
bindToController: {} . Component inputs and outputs should be bound to the controller instead of

using the $scope .
controller and controllerAs . Components have their own controllers.
template or templateUrl . Components have their own templates.

Component directives may also use the following attributes:

transclude: true/{} , if the component needs to transclude content from elsewhere.
require , if the component needs to communicate with some parent component's controller.

Using Component Directives

Component directives should not use the following attributes:

compile . This will not be supported in Angular.
replace: true . Angular never replaces a component element with the component template. This

attribute is also deprecated in AngularJS.
priority and terminal . While AngularJS components may use these, they are not used in

Angular and it is better not to write code that relies on them.

An AngularJS component directive that is fully aligned with the Angular architecture may look something like
this:

AngularJS 1.5 introduces the component API that makes it easier to define component directives like these. It
is a good idea to use this API for component directives for several reasons:

It requires less boilerplate code.
It enforces the use of component best practices like controllerAs .
It has good default values for directive attributes like scope and restrict .

The component directive example from above looks like this when expressed using the component API:

Controller lifecycle hook methods $onInit() , $onDestroy() , and $onChanges() are another
convenient feature that AngularJS 1.5 introduces. They all have nearly exact equivalents in Angular, so
organizing component lifecycle logic around them will ease the eventual Angular upgrade process.

The ngUpgrade library in Angular is a very useful tool for upgrading anything but the smallest of applications.
With it you can mix and match AngularJS and Angular components in the same application and have them
interoperate seamlessly. That means you don't have to do the upgrade work all at once, since there's a natural
coexistence between the two frameworks during the transition period.

The primary tool provided by ngUpgrade is called the UpgradeModule . This is a module that contains
utilities for bootstrapping and managing hybrid applications that support both Angular and AngularJS code.

When you use ngUpgrade, what you're really doing is running both AngularJS and Angular at the same time.
All Angular code is running in the Angular framework, and AngularJS code in the AngularJS framework. Both of
these are the actual, fully featured versions of the frameworks. There is no emulation going on, so you can
expect to have all the features and natural behavior of both frameworks.

Upgrading with ngUpgrade

How ngUpgrade Works

What happens on top of this is that components and services managed by one framework can interoperate
with those from the other framework. This happens in three main areas: Dependency injection, the DOM, and
change detection.

Dependency injection is front and center in both AngularJS and Angular, but there are some key differences
between the two frameworks in how it actually works.

AngularJS Angular

Dependency injection tokens are always
strings

Tokens [can have different types](guide/dependency-
injection). They are often classes. They may also be
strings.

There is exactly one injector. Even in multi-
module applications, everything is poured
into one big namespace.

There is a [tree hierarchy of injectors](guide/hierarchical-
dependency-injection), with a root injector and an
additional injector for each component.

Even accounting for these differences you can still have dependency injection interoperability. The
UpgradeModule resolves the differences and makes everything work seamlessly:

You can make AngularJS services available for injection to Angular code by upgrading them. The same
singleton instance of each service is shared between the frameworks. In Angular these services will
always be in the root injector and available to all components.

You can also make Angular services available for injection to AngularJS code by downgrading them. Only
services from the Angular root injector can be downgraded. Again, the same singleton instances are
shared between the frameworks. When you register a downgraded service, you must explicitly specify a
string token that you want to use in AngularJS.

Dependency Injection

In the DOM of a hybrid ngUpgrade application are components and directives from both AngularJS and
Angular. These components communicate with each other by using the input and output bindings of their
respective frameworks, which ngUpgrade bridges together. They may also communicate through shared
injected dependencies, as described above.

The key thing to understand about a hybrid application is that every element in the DOM is owned by exactly
one of the two frameworks. The other framework ignores it. If an element is owned by AngularJS, Angular
treats it as if it didn't exist, and vice versa.

So normally a hybrid application begins life as an AngularJS application, and it is AngularJS that processes the
root template, e.g. the index.html. Angular then steps into the picture when an Angular component is used
somewhere in an AngularJS template. That component's template will then be managed by Angular, and it may
contain any number of Angular components and directives.

Beyond that, you may interleave the two frameworks. You always cross the boundary between the two
frameworks by one of two ways:

1. By using a component from the other framework: An AngularJS template using an Angular component, or
an Angular template using an AngularJS component.

2. By transcluding or projecting content from the other framework. ngUpgrade bridges the related concepts
of AngularJS transclusion and Angular content projection together.

Components and the DOM

Whenever you use a component that belongs to the other framework, a switch between framework boundaries
occurs. However, that switch only happens to the elements in the template of that component. Consider a
situation where you use an Angular component from AngularJS like this:

<a-component></a-component>

The DOM element <a-component> will remain to be an AngularJS managed element, because it's defined
in an AngularJS template. That also means you can apply additional AngularJS directives to it, but not Angular
directives. It is only in the template of the <a-component> where Angular steps in. This same rule also
applies when you use AngularJS component directives from Angular.

The scope.$apply() is how AngularJS detects changes and updates data bindings. After every event that
occurs, scope.$apply() gets called. This is done either automatically by the framework, or manually by
you.

In Angular things are different. While change detection still occurs after every event, no one needs to call
scope.$apply() for that to happen. This is because all Angular code runs inside something called the

Angular zone. Angular always knows when the code finishes, so it also knows when it should kick off change
detection. The code itself doesn't have to call scope.$apply() or anything like it.

In the case of hybrid applications, the UpgradeModule bridges the AngularJS and Angular approaches.
Here's what happens:

Everything that happens in the application runs inside the Angular zone. This is true whether the event

Change Detection

originated in AngularJS or Angular code. The zone triggers Angular change detection after every event.

The UpgradeModule will invoke the AngularJS $rootScope.$apply() after every turn of the
Angular zone. This also triggers AngularJS change detection after every event.

In practice, you do not need to call $apply() , regardless of whether it is in AngularJS on Angular. The
UpgradeModule does it for us. You can still call $apply() so there is no need to remove such calls

from existing code. Those calls just trigger additional AngularJS change detection checks in a hybrid
application.

When you downgrade an Angular component and then use it from AngularJS, the component's inputs will be
watched using AngularJS change detection. When those inputs change, the corresponding properties in the
component are set. You can also hook into the changes by implementing the OnChanges interface in the
component, just like you could if it hadn't been downgraded.

Correspondingly, when you upgrade an AngularJS component and use it from Angular, all the bindings defined
for the component directive's scope (or bindToController) will be hooked into Angular change
detection. They will be treated as regular Angular inputs. Their values will be written to the upgraded
component's scope (or controller) when they change.

Both AngularJS and Angular have their own concept of modules to help organize an application into cohesive
blocks of functionality.

Their details are quite different in architecture and implementation. In AngularJS, you add Angular assets to the
angular.module property. In Angular, you create one or more classes adorned with an NgModule

decorator that describes Angular assets in metadata. The differences blossom from there.

In a hybrid application you run both versions of Angular at the same time. That means that you need at least
one module each from both AngularJS and Angular. You will import UpgradeModule inside the NgModule,
and then use it for bootstrapping the AngularJS module.

Using UpgradeModule with Angular NgModules

Read more about [NgModules](guide/ngmodule).

To bootstrap a hybrid application, you must bootstrap each of the Angular and AngularJS parts of the
application. You must bootstrap the Angular bits first and then ask the UpgradeModule to bootstrap the
AngularJS bits next.

In an AngularJS application you have a root AngularJS module, which will also be used to bootstrap the
AngularJS application.

Pure AngularJS applications can be automatically bootstrapped by using an ng-app directive somewhere
on the HTML page. But for hybrid applications, you manually bootstrap via the UpgradeModule . Therefore,
it is a good preliminary step to switch AngularJS applications to use the manual JavaScript
angular.bootstrap method even before switching them to hybrid mode.

Say you have an ng-app driven bootstrap such as this one:

You can remove the ng-app and ng-strict-di directives from the HTML and instead switch to calling
angular.bootstrap from JavaScript, which will result in the same thing:

To begin converting your AngularJS application to a hybrid, you need to load the Angular framework. You can
see how this can be done with SystemJS by following the instructions in Setup, selectively copying code from
the QuickStart github repository.

You also need to install the @angular/upgrade package via
npm install @angular/upgrade --save and add a mapping for the
@angular/upgrade/static package:

Next, create an app.module.ts file and add the following NgModule class:

This bare minimum NgModule imports BrowserModule , the module every Angular browser-based app
must have. It also imports UpgradeModule from @angular/upgrade/static , which exports providers
that will be used for upgrading and downgrading services and components.

In the constructor of the AppModule , use dependency injection to get a hold of the UpgradeModule

instance, and use it to bootstrap the AngularJS app in the AppModule.ngDoBootstrap method. The
upgrade.bootstrap method takes the exact same arguments as angular.bootstrap:

Note that you do not add a `bootstrap` declaration to the `@NgModule` decorator, since AngularJS will own the
root template of the application.

Bootstrapping hybrid applications

Now you can bootstrap AppModule using the platformBrowserDynamic.bootstrapModule

method.

Congratulations! You're running a hybrid application! The existing AngularJS code works as before and you're
ready to start adding Angular code.

Once you're running a hybrid app, you can start the gradual process of upgrading code. One of the more
common patterns for doing that is to use an Angular component in an AngularJS context. This could be a
completely new component or one that was previously AngularJS but has been rewritten for Angular.

Say you have a simple Angular component that shows information about a hero:

If you want to use this component from AngularJS, you need to downgrade it using the
downgradeComponent() method. The result is an AngularJS directive, which you can then register in the

AngularJS module:

Because HeroDetailComponent is an Angular component, you must also add it to the declarations

in the AppModule .

And because this component is being used from the AngularJS module, and is an entry point into the Angular
application, you must add it to the entryComponents for the NgModule.

All Angular components, directives and pipes must be declared in an NgModule.

The net result is an AngularJS directive called heroDetail , that you can use like any other directive in
AngularJS templates.

Note that this AngularJS is an element directive (`restrict: 'E'`) called `heroDetail`. An AngularJS element
directive is matched based on its _name_. *The `selector` metadata of the downgraded Angular component is
ignored.*

Most components are not quite this simple, of course. Many of them have inputs and outputs that connect them
to the outside world. An Angular hero detail component with inputs and outputs might look like this:

These inputs and outputs can be supplied from the AngularJS template, and the downgradeComponent()

method takes care of wiring them up:

Note that even though you are in an AngularJS template, you're using Angular attribute syntax to bind the

Using Angular Components from AngularJS Code

inputs and outputs. This is a requirement for downgraded components. The expressions themselves are still
regular AngularJS expressions.

Use kebab-case for downgraded component attributes
There's one notable exception to the rule of using Angular attribute syntax for downgraded components. It has
to do with input or output names that consist of multiple words. In Angular, you would bind these attributes
using camelCase: [myHero]="hero" But when using them from AngularJS templates, you must use kebab-case:
[my-hero]="hero"

The $event variable can be used in outputs to gain access to the object that was emitted. In this case it will
be the Hero object, because that is what was passed to this.deleted.emit() .

Since this is an AngularJS template, you can still use other AngularJS directives on the element, even though it
has Angular binding attributes on it. For example, you can easily make multiple copies of the component using
ng-repeat :

So, you can write an Angular component and then use it from AngularJS code. This is useful when you start to
migrate from lower-level components and work your way up. But in some cases it is more convenient to do
things in the opposite order: To start with higher-level components and work your way down. This too can be
done using the UpgradeModule . You can upgrade AngularJS component directives and then use them
from Angular.

Not all kinds of AngularJS directives can be upgraded. The directive really has to be a component directive,
with the characteristics described in the preparation guide above. The safest bet for ensuring compatibility is
using the component API introduced in AngularJS 1.5.

A simple example of an upgradable component is one that just has a template and a controller:

You can upgrade this component to Angular using the UpgradeComponent class. By creating a new
Angular directive that extends UpgradeComponent and doing a super call inside it's constructor, you
have a fully upgraded AngularJS component to be used inside Angular. All that is left is to add it to
AppModule 's declarations array.

Upgraded components are Angular **directives**, instead of **components**, because Angular is unaware that
AngularJS will create elements under it. As far as Angular knows, the upgraded component is just a directive -
a tag - and Angular doesn't have to concern itself with it's children.

Using AngularJS Component Directives from Angular Code

An upgraded component may also have inputs and outputs, as defined by the scope/controller bindings of the
original AngularJS component directive. When you use the component from an Angular template, provide the
inputs and outputs using Angular template syntax, observing the following rules:

Binding
definition

Template syntax

Attribute
binding

`myAttribute:
'@myAttribute'`

``

Expression
binding

`myOutput:
'&myOutput'`

``

One-way
binding

`myValue: ' ``

Two-way
binding

`myValue:
'=myValue'`

As a two-way binding: ``. Since most AngularJS two-way bindings
actually only need a one-way binding in practice, `` is often enough.

For example, imagine a hero detail AngularJS component directive with one input and one output:

You can upgrade this component to Angular, annotate inputs and outputs in the upgrade directive, and then
provide the input and output using Angular template syntax:

When you are using a downgraded Angular component from an AngularJS template, the need may arise to
transclude some content into it. This is also possible. While there is no such thing as transclusion in Angular,
there is a very similar concept called content projection. The UpgradeModule is able to make these two
features interoperate.

Angular components that support content projection make use of an <ng-content> tag within them. Here's
an example of such a component:

When using the component from AngularJS, you can supply contents for it. Just like they would be transcluded
in AngularJS, they get projected to the location of the <ng-content> tag in Angular:

When AngularJS content gets projected inside an Angular component, it still remains in "AngularJS land" and
is managed by the AngularJS framework.

Projecting AngularJS Content into Angular Components

Just as you can project AngularJS content into Angular components, you can transclude Angular content into
AngularJS components, whenever you are using upgraded versions from them.

When an AngularJS component directive supports transclusion, it may use the ng-transclude directive in
its template to mark the transclusion point:

If you upgrade this component and use it from Angular, you can populate the component tag with contents that
will then get transcluded:

When running a hybrid app, you may encounter situations where you need to inject some AngularJS
dependencies into your Angular code. Maybe you have some business logic still in AngularJS services. Maybe
you want access to AngularJS's built-in services like $location or $timeout .

In these situations, it is possible to upgrade an AngularJS provider to Angular. This makes it possible to then
inject it somewhere in Angular code. For example, you might have a service called HeroesService in
AngularJS:

You can upgrade the service using a Angular factory provider that requests the service from the AngularJS
$injector .

Many developers prefer to declare the factory provider in a separate ajs-upgraded-providers.ts file
so that they are all together, making it easier to reference them, create new ones and delete them once the
upgrade is over.

It's also recommended to export the heroesServiceFactory function so that Ahead-of-Time compilation
can pick it up.

You can then inject it in Angular using it's class as a type annotation:

In this example you upgraded a service class. You can use a TypeScript type annotation when you inject it.
While it doesn't affect how the dependency is handled, it enables the benefits of static type checking. This is
not required though, and any AngularJS service, factory, or provider can be upgraded.

Transcluding Angular Content into AngularJS Component Directives

Making AngularJS Dependencies Injectable to Angular

Making Angular Dependencies Injectable to AngularJS

In addition to upgrading AngularJS dependencies, you can also downgrade Angular dependencies, so that you
can use them from AngularJS. This can be useful when you start migrating services to Angular or creating new
services in Angular while retaining components written in AngularJS.

For example, you might have an Angular service called Heroes :

Again, as with Angular components, register the provider with the NgModule by adding it to the module's
providers list.

Now wrap the Angular Heroes in an AngularJS factory function using downgradeInjectable() and
plug the factory into an AngularJS module. The name of the AngularJS dependency is up to you:

After this, the service is injectable anywhere in AngularJS code:

You can take advantage of Ahead-of-time (AOT) compilation on hybrid apps just like on any other Angular
application. The setup for an hybrid app is mostly the same as described in the Ahead-of-time Compilation
chapter save for differences in index.html and main-aot.ts

The index.html will likely have script tags loading AngularJS files, so the index.html for AOT must
also load those files. An easy way to copy them is by adding each to the copy-dist-files.js file.

You'll need to use the generated AppModuleFactory , instead of the original AppModule to bootstrap
the hybrid app:

And that's all you need do to get the full benefit of AOT for Angular apps!

In this section, you'll learn to prepare and upgrade an application with ngUpgrade . The example app is
Angular PhoneCat from the original AngularJS tutorial, which is where many of us began our Angular
adventures. Now you'll see how to bring that application to the brave new world of Angular.

During the process you'll learn how to apply the steps outlined in the preparation guide. You'll align the
application with Angular and also start writing in TypeScript.

To follow along with the tutorial, clone the angular-phonecat repository and apply the steps as you go.

In terms of project structure, this is where the work begins:

angular-phonecat

Using Ahead-of-time compilation with hybrid apps

PhoneCat Upgrade Tutorial

bower.json
karma.conf.js
package.json
app
core
checkmark
checkmark.filter.js
checkmark.filter.spec.js
phone
phone.module.js
phone.service.js
phone.service.spec.js
core.module.js
phone-detail
phone-detail.component.js
phone-detail.component.spec.js
phone-detail.module.js
phone-detail.template.html
phone-list
phone-list.component.js
phone-list.component.spec.js
phone-list.module.js
phone-list.template.html
img
...
phones
...
app.animations.js
app.config.js
app.css
app.module.js
index.html
e2e-tests
protractor-conf.js
scenarios.js

This is actually a pretty good starting point. The code uses the AngularJS 1.5 component API and the
organization follows the AngularJS Style Guide, which is an important preparation step before a successful
upgrade.

Each component, service, and filter is in its own source file, as per the Rule of 1.

The core , phone-detail , and phone-list modules are each in their own subdirectory. Those
subdirectories contain the JavaScript code as well as the HTML templates that go with each particular
feature. This is in line with the Folders-by-Feature Structure and Modularity rules.

Unit tests are located side-by-side with application code where they are easily found, as described in the
rules for Organizing Tests.

Since you're going to be writing Angular code in TypeScript, it makes sense to bring in the TypeScript compiler
even before you begin upgrading.

You'll also start to gradually phase out the Bower package manager in favor of NPM, installing all new
dependencies using NPM, and eventually removing Bower from the project.

Begin by installing TypeScript to the project.

npm i typescript --save-dev

Install type definitions for the existing libraries that you're using but that don't come with prepackaged types:
AngularJS and the Jasmine unit test framework.

npm install @types/jasmine @types/angular @types/angular-animate @types/angular-cookies
@types/angular-mocks @types/angular-resource @types/angular-route @types/angular-sanitize --save-dev

You should also configure the TypeScript compiler with a tsconfig.json in the project directory as
described in the TypeScript Configuration guide. The tsconfig.json file tells the TypeScript compiler how
to turn your TypeScript files into ES5 code bundled into CommonJS modules.

Finally, you should add some npm scripts in package.json to compile the TypeScript files to JavaScript
(based on the tsconfig.json configuration file):

"script": { "tsc": "tsc", "tsc:w": "tsc -w", ...

Now launch the TypeScript compiler from the command line in watch mode:

npm run tsc:w

Keep this process running in the background, watching and recompiling as you make changes.

Next, convert your current JavaScript files into TypeScript. Since TypeScript is a super-set of ECMAScript

Switching to TypeScript

2015, which in turn is a super-set of ECMAScript 5, you can simply switch the file extensions from .js to
.ts and everything will work just like it did before. As the TypeScript compiler runs, it emits the

corresponding .js file for every .ts file and the compiled JavaScript is what actually gets executed. If
you start the project HTTP server with npm start , you should see the fully functional application in your
browser.

Now that you have TypeScript though, you can start benefiting from some of its features. There's a lot of value
the language can provide to AngularJS applications.

For one thing, TypeScript is a superset of ES2015. Any app that has previously been written in ES5 - like the
PhoneCat example has - can with TypeScript start incorporating all of the JavaScript features that are new to
ES2015. These include things like let s and const s, arrow functions, default function parameters, and
destructuring assignments.

Another thing you can do is start adding type safety to your code. This has actually partially already happened
because of the AngularJS typings you installed. TypeScript are checking that you are calling AngularJS APIs
correctly when you do things like register components to Angular modules.

But you can also start adding type annotations to get even more out of TypeScript's type system. For instance,
you can annotate the checkmark filter so that it explicitly expects booleans as arguments. This makes it clearer
what the filter is supposed to do.

In the Phone service, you can explicitly annotate the $resource service dependency as an
angular.resource.IResourceService - a type defined by the AngularJS typings.

You can apply the same trick to the application's route configuration file in app.config.ts , where you are
using the location and route services. By annotating them accordingly TypeScript can verify you're calling their
APIs with the correct kinds of arguments.

The [AngularJS 1.x type definitions](https://www.npmjs.com/package/@types/angular) you installed are not
officially maintained by the Angular team, but are quite comprehensive. It is possible to make an AngularJS 1.x
application fully type-annotated with the help of these definitions. If this is something you wanted to do, it would
be a good idea to enable the `noImplicitAny` configuration option in `tsconfig.json`. This would cause the
TypeScript compiler to display a warning when there's any code that does not yet have type annotations. You
could use it as a guide to inform us about how close you are to having a fully annotated project.

Another TypeScript feature you can make use of is classes. In particular, you can turn component controllers
into classes. That way they'll be a step closer to becoming Angular component classes, which will make life
easier once you upgrade.

AngularJS expects controllers to be constructor functions. That's exactly what ES2015/TypeScript classes are
under the hood, so that means you can just plug in a class as a component controller and AngularJS will

happily use it.

Here's what the new class for the phone list component controller looks like:

What was previously done in the controller function is now done in the class constructor function. The
dependency injection annotations are attached to the class using a static property $inject . At runtime this
becomes the PhoneListController.$inject property.

The class additionally declares three members: The array of phones, the name of the current sort key, and the
search query. These are all things you have already been attaching to the controller but that weren't explicitly
declared anywhere. The last one of these isn't actually used in the TypeScript code since it's only referred to in
the template, but for the sake of clarity you should define all of the controller members.

In the Phone detail controller, you'll have two members: One for the phone that the user is looking at and
another for the URL of the currently displayed image:

This makes the controller code look a lot more like Angular already. You're all set to actually introduce Angular
into the project.

If you had any AngularJS services in the project, those would also be a good candidate for converting to
classes, since like controllers, they're also constructor functions. But you only have the Phone factory in this
project, and that's a bit special since it's an ngResource factory. So you won't be doing anything to it in the
preparation stage. You'll instead turn it directly into an Angular service.

Having completed the preparation work, get going with the Angular upgrade of PhoneCat. You'll do this
incrementally with the help of ngUpgrade that comes with Angular. By the time you're done, you'll be able to
remove AngularJS from the project completely, but the key is to do this piece by piece without breaking the
application.

The project also contains some animations. You won't upgrade them in this version of the guide. Turn to the
[Angular animations](guide/animations) guide to learn about that.

Install Angular into the project, along with the SystemJS module loader. Take a look at the results of the Setup
instructions and get the following configurations from there:

Add Angular and the other new dependencies to package.json

The SystemJS configuration file systemjs.config.js to the project root directory.

Once these are done, run:

Installing Angular

npm install

Soon you can load Angular dependencies into the application via index.html , but first you need to do
some directory path adjustments. You'll need to load files from node_modules and the project root instead
of from the /app directory as you've been doing to this point.

Move the app/index.html file to the project root directory. Then change the development server root path
in package.json to also point to the project root instead of app :

"start": "http-server ./ -a localhost -p 8000 -c-1",

Now you're able to serve everything from the project root to the web browser. But you do not want to have to
change all the image and data paths used in the application code to match the development setup. For that
reason, you'll add a <base> tag to index.html , which will cause relative URLs to be resolved back to
the /app directory:

Now you can load Angular via SystemJS. You'll add the Angular polyfills and the SystemJS config to the end of
the <head> section, and then you'll use System.import to load the actual application:

You also need to make a couple of adjustments to the systemjs.config.js file installed during setup.

Point the browser to the project root when loading things through SystemJS, instead of using the <base>

URL.

Install the upgrade package via npm install @angular/upgrade --save and add a mapping for
the @angular/upgrade/static package.

Now create the root NgModule class called AppModule . There is already a file named
app.module.ts that holds the AngularJS module. Rename it to app.module.ajs.ts and update the

corresponding script name in the index.html as well. The file contents remain:

Now create a new app.module.ts with the minimum NgModule class:

Next, you'll bootstrap the application as a hybrid application that supports both AngularJS and Angular
components. After that, you can start converting the individual pieces to Angular.

The application is currently bootstrapped using the AngularJS ng-app directive attached to the <html>

element of the host page. This will no longer work in the hybrid app. Switch to the ngUpgrade bootstrap method

Creating the AppModule

Bootstrapping a hybrid PhoneCat

instead.

First, remove the ng-app attribute from index.html . Then import UpgradeModule in the
AppModule , and override it's ngDoBootstrap method:

Note that you are bootstrapping the AngularJS module from inside ngDoBootstrap . The arguments are the
same as you would pass to angular.bootstrap if you were manually bootstrapping AngularJS: the root
element of the application; and an array of the AngularJS 1.x modules that you want to load.

Finally, bootstrap the AppModule in src/main.ts . This file has been configured as the application
entrypoint in systemjs.config.js , so it is already being loaded by the browser.

Now you're running both AngularJS and Angular at the same time. That's pretty exciting! You're not running
any actual Angular components yet. That's next.

Why declare _angular_ as _angular.IAngularStatic_? `@types/angular` is declared as a UMD module,
and due to the way UMD typings work, once you have an ES6 `import` statement in a file all UMD typed
modules must also be imported via `import` statements instead of being globally available. AngularJS is
currently loaded by a script tag in `index.html`, which means that the whole app has access to it as a global
and uses the same instance of the `angular` variable. If you used `import * as angular from 'angular'` instead,
you'd also have to load every file in the AngularJS app to use ES2015 modules in order to ensure AngularJS
was being loaded correctly. This is a considerable effort and it often isn't worth it, especially since you are in the
process of moving your code to Angular. Instead, declare `angular` as `angular.IAngularStatic` to indicate it is a
global variable and still have full typing support.

The first piece you'll port over to Angular is the Phone service, which resides in
app/core/phone/phone.service.ts and makes it possible for components to load phone information

from the server. Right now it's implemented with ngResource and you're using it for two things:

For loading the list of all phones into the phone list component.
For loading the details of a single phone into the phone detail component.

You can replace this implementation with an Angular service class, while keeping the controllers in AngularJS
land.

In the new version, you import the Angular HTTP module and call its Http service instead of
ngResource .

Re-open the app.module.ts file, import and add HttpModule to the imports array of the
AppModule :

Upgrading the Phone service

Now you're ready to upgrade the Phone service itself. Replace the ngResource-based service in
phone.service.ts with a TypeScript class decorated as @Injectable :

The @Injectable decorator will attach some dependency injection metadata to the class, letting Angular
know about its dependencies. As described by the Dependency Injection Guide, this is a marker decorator you
need to use for classes that have no other Angular decorators but still need to have their dependencies
injected.

In its constructor the class expects to get the Http service. It will be injected to it and it is stored as a private
field. The service is then used in the two instance methods, one of which loads the list of all phones, and the
other loads the details of a specified phone:

The methods now return Observables of type PhoneData and PhoneData[] . This is a type you don't
have yet. Add a simple interface for it:

@angular/upgrade/static has a downgradeInjectable method for the purpose of making
Angular services available to AngularJS code. Use it to plug in the Phone service:

Here's the full, final code for the service:

Notice that you're importing the map operator of the RxJS Observable separately. Do this for every
RxJS operator.

The new Phone service has the same features as the original, ngResource -based service. Because it's
an Angular service, you register it with the NgModule providers:

Now that you are loading phone.service.ts through an import that is resolved by SystemJS, you should
remove the <script> tag for the service from index.html . This is something you'll do to all components
as you upgrade them. Simultaneously with the AngularJS to Angular upgrade you're also migrating code from
scripts to modules.

At this point, you can switch the two components to use the new service instead of the old one. While you
$inject it as the downgraded phone factory, it's really an instance of the Phone class and you

annotate its type accordingly:

Now there are two AngularJS components using an Angular service! The components don't need to be aware
of this, though the fact that the service returns Observables and not Promises is a bit of a giveaway. In any
case, what you've achieved is a migration of a service to Angular without having to yet migrate the components
that use it.

You could use the `toPromise` method of `Observable` to turn those Observables into Promises in the service.
In many cases that reduce the number of changes to the component controllers.

Upgrade the AngularJS components to Angular components next. Do it one component at a time while still
keeping the application in hybrid mode. As you make these conversions, you'll also define your first Angular
pipes.

Look at the phone list component first. Right now it contains a TypeScript controller class and a component
definition object. You can morph this into an Angular component by just renaming the controller class and
turning the AngularJS component definition object into an Angular @Component decorator. You can then
also remove the static $inject property from the class:

The selector attribute is a CSS selector that defines where on the page the component should go. In
AngularJS you do matching based on component names, but in Angular you have these explicit selectors. This
one will match elements with the name phone-list , just like the AngularJS version did.

Now convert the template of this component into Angular syntax. The search controls replace the AngularJS
$ctrl expressions with Angular's two-way [(ngModel)] binding syntax:

Replace the list's ng-repeat with an *ngFor as described in the Template Syntax page. Replace the
image tag's ng-src with a binding to the native src property.

The built-in AngularJS filter and orderBy filters do not exist in Angular, so you need to do the filtering
and sorting yourself.

You replaced the filter and orderBy filters with bindings to the getPhones() controller method,
which implements the filtering and ordering logic inside the component itself.

Now you need to downgrade the Angular component so you can use it in AngularJS. Instead of registering a
component, you register a phoneList directive, a downgraded version of the Angular component.

The as angular.IDirectiveFactory cast tells the TypeScript compiler that the return value of the
downgradeComponent method is a directive factory.

The new PhoneListComponent uses the Angular ngModel directive, located in the FormsModule .
Add the FormsModule to NgModule imports, declare the new PhoneListComponent and finally add
it to entryComponents since you downgraded it:

Remove the <script> tag for the phone list component from index.html .

Now set the remaining phone-detail.component.ts as follows:

Upgrading Components

No Angular filter or orderBy filters

This is similar to the phone list component. The new wrinkle is the RouteParams type annotation that
identifies the routeParams dependency.

The AngularJS injector has an AngularJS router dependency called $routeParams , which was injected into
PhoneDetails when it was still an AngularJS controller. You intend to inject it into the new
PhoneDetailsComponent .

Unfortunately, AngularJS dependencies are not automatically available to Angular components. You must
upgrade this service via a factory provider to make $routeParams an Angular injectable. Do that in a new
file called ajs-upgraded-providers.ts and import it in app.module.ts :

Convert the phone detail component template into Angular syntax as follows:

There are several notable changes here:

You've removed the $ctrl. prefix from all expressions.

You've replaced ng-src with property bindings for the standard src property.

You're using the property binding syntax around ng-class . Though Angular does have a very similar
ngClass as AngularJS does, its value is not magically evaluated as an expression. In Angular, you

always specify in the template when an attribute's value is a property expression, as opposed to a literal
string.

You've replaced ng-repeat s with *ngFor s.

You've replaced ng-click with an event binding for the standard click .

You've wrapped the whole template in an ngIf that causes it only to be rendered when there is a
phone present. You need this because when the component first loads, you don't have phone yet and
the expressions will refer to a non-existing value. Unlike in AngularJS, Angular expressions do not fail
silently when you try to refer to properties on undefined objects. You need to be explicit about cases where
this is expected.

Add PhoneDetailComponent component to the NgModule declarations and entryComponents:

You should now also remove the phone detail component <script> tag from index.html .

The AngularJS directive had a checkmark filter. Turn that into an Angular pipe.

There is no upgrade method to convert filters into pipes. You won't miss it. It's easy to turn the filter function into

Add the CheckmarkPipe

an equivalent Pipe class. The implementation is the same as before, repackaged in the transform method.
Rename the file to checkmark.pipe.ts to conform with Angular conventions:

Now import and declare the newly created pipe and remove the filter <script> tag from index.html :

To use AOT with a hybrid app, you have to first set it up like any other Angular application, as shown in the
Ahead-of-time Compilation chapter.

Then change main-aot.ts to bootstrap the AppComponentFactory that was generated by the AOT
compiler:

You need to load all the AngularJS files you already use in index.html in aot/index.html as well:

These files need to be copied together with the polyfills. The files the application needs at runtime, like the
.json phone lists and images, also need to be copied.

Install fs-extra via npm install fs-extra --save-dev for better file copying, and change
copy-dist-files.js to the following:

And that's all you need to use AOT while upgrading your app!

At this point, you've replaced all AngularJS application components with their Angular counterparts, even
though you're still serving them from the AngularJS router.

Angular has an all-new router.

Like all routers, it needs a place in the UI to display routed views. For Angular that's the <router-outlet>

and it belongs in a root component at the top of the applications component tree.

You don't yet have such a root component, because the app is still managed as an AngularJS app. Create a
new app.component.ts file with the following AppComponent class:

It has a simple template that only includes the `. This component just renders the contents of the active route
and nothing else.

The selector tells Angular to plug this root component into the <phonecat-app> element on the host web
page when the application launches.

AOT compile the hybrid app

Adding The Angular Router And Bootstrap

Add the Angular router

Add this <phonecat-app> element to the index.html . It replaces the old AngularJS ng-view

directive:

A router needs configuration whether it's the AngularJS or Angular or any other router.

The details of Angular router configuration are best left to the Routing documentation which recommends that
you create a NgModule dedicated to router configuration (called a Routing Module).

This module defines a routes object with two routes to the two phone components and a default route for
the empty path. It passes the routes to the RouterModule.forRoot method which does the rest.

A couple of extra providers enable routing with "hash" URLs such as #!/phones instead of the default
"push state" strategy.

Now update the AppModule to import this AppRoutingModule and also the declare the root
AppComponent as the bootstrap component. That tells Angular that it should bootstrap the app with the root
AppComponent and insert it's view into the host web page.

You must also remove the bootstrap of the AngularJS module from ngDoBootstrap() in
app.module.ts and the UpgradeModule import.

And since you are routing to PhoneListComponent and PhoneDetailComponent directly rather than
using a route template with a <phone-list> or <phone-detail> tag, you can do away with their
Angular selectors as well.

You no longer have to hardcode the links to phone details in the phone list. You can generate data bindings for
each phone's id to the routerLink directive and let that directive construct the appropriate URL to the
PhoneDetailComponent :

See the Routing page for details.

The Angular router passes route parameters differently. Correct the PhoneDetail component constructor
to expect an injected ActivatedRoute object. Extract the phoneId from the
ActivatedRoute.snapshot.params and fetch the phone data as before:

Create the Routing Module

Generate links for each phone

Use route parameters

You are now running a pure Angular application!

It is time to take off the training wheels and let the application begin its new life as a pure, shiny Angular app.
The remaining tasks all have to do with removing code - which of course is every programmer's favorite task!

The application is still bootstrapped as a hybrid app. There's no need for that anymore.

Switch the bootstrap method of the application from the UpgradeModule to the Angular way.

If you haven't already, remove all references to the UpgradeModule from app.module.ts , as well as
any factory provider for AngularJS services, and the app/ajs-upgraded-providers.ts file.

Also remove any downgradeInjectable() or downgradeComponent() you find, together with the
associated AngularJS factory or directive declarations. Since you no longer have downgraded components,
you no longer list them in entryComponents .

You may also completely remove the following files. They are AngularJS module configuration files and not
needed in Angular:

app/app.module.ajs.ts

app/app.config.ts

app/core/core.module.ts

app/core/phone/phone.module.ts

app/phone-detail/phone-detail.module.ts

app/phone-list/phone-list.module.ts

The external typings for AngularJS may be uninstalled as well. The only ones you still need are for Jasmine
and Angular polyfills. The @angular/upgrade package and it's mapping in systemjs.config.js can
also go.

npm uninstall @angular/upgrade --save npm uninstall @types/angular @types/angular-animate
@types/angular-cookies @types/angular-mocks @types/angular-resource @types/angular-route
@types/angular-sanitize --save-dev

Finally, from index.html , remove all references to AngularJS scripts and jQuery. When you're done, this is
what it should look like:

That is the last you'll see of AngularJS! It has served us well but now it's time to say goodbye.

Say Goodbye to AngularJS

Appendix: Upgrading PhoneCat Tests

Tests can not only be retained through an upgrade process, but they can also be used as a valuable safety
measure when ensuring that the application does not break during the upgrade. E2E tests are especially useful
for this purpose.

The PhoneCat project has both E2E Protractor tests and some Karma unit tests in it. Of these two, E2E tests
can be dealt with much more easily: By definition, E2E tests access the application from the outside by
interacting with the various UI elements the app puts on the screen. E2E tests aren't really that concerned with
the internal structure of the application components. That also means that, although you modify the project
quite a bit during the upgrade, the E2E test suite should keep passing with just minor modifications. You didn't
change how the application behaves from the user's point of view.

During TypeScript conversion, there is nothing to do to keep E2E tests working. But when you change the
bootstrap to that of a Hybrid app, you must make a few changes.

Update the protractor-conf.js to sync with hybrid apps:

ng12Hybrid: true

When you start to upgrade components and their templates to Angular, you'll make more changes because the
E2E tests have matchers that are specific to AngularJS. For PhoneCat you need to make the following
changes in order to make things work with Angular:

Previous code New code Notes

`by.repeater('phone in
$ctrl.phones').column('phone.name')`

`by.css('.phones
.name')`

The repeater matcher relies on
AngularJS `ng-repeat`

`by.repeater('phone in $ctrl.phones')`
`by.css('.phones
li')`

The repeater matcher relies on
AngularJS `ng-repeat`

`by.model('$ctrl.query')` `by.css('input')`
The model matcher relies on
AngularJS `ng-model`

`by.model('$ctrl.orderProp')` `by.css('select')`
The model matcher relies on
AngularJS `ng-model`

`by.binding('$ctrl.phone.name')` `by.css('h1')`
The binding matcher relies on
AngularJS data binding

When the bootstrap method is switched from that of UpgradeModule to pure Angular, AngularJS ceases to

E2E Tests

exist on the page completely. At this point, you need to tell Protractor that it should not be looking for an
AngularJS app anymore, but instead it should find Angular apps from the page.

Replace the ng12Hybrid previously added with the following in protractor-conf.js :

useAllAngular2AppRoots: true,

Also, there are a couple of Protractor API calls in the PhoneCat test code that are using the AngularJS
$location service under the hood. As that service is no longer present after the upgrade, replace those

calls with ones that use WebDriver's generic URL APIs instead. The first of these is the redirection spec:

And the second is the phone links spec:

For unit tests, on the other hand, more conversion work is needed. Effectively they need to be upgraded along
with the production code.

During TypeScript conversion no changes are strictly necessary. But it may be a good idea to convert the unit
test code into TypeScript as well.

For instance, in the phone detail component spec, you can use ES2015 features like arrow functions and
block-scoped variables and benefit from the type definitions of the AngularJS services you're consuming:

Once you start the upgrade process and bring in SystemJS, configuration changes are needed for Karma. You
need to let SystemJS load all the new Angular code, which can be done with the following kind of shim file:

The shim first loads the SystemJS configuration, then Angular's test support libraries, and then the application's
spec files themselves.

Karma configuration should then be changed so that it uses the application root dir as the base directory,
instead of app .

Once done, you can load SystemJS and other dependencies, and also switch the configuration for loading
application files so that they are not included to the page by Karma. You'll let the shim and SystemJS load
them.

Since the HTML templates of Angular components will be loaded as well, you must help Karma out a bit so that
it can route them to the right paths:

The unit test files themselves also need to be switched to Angular when their production counterparts are
switched. The specs for the checkmark pipe are probably the most straightforward, as the pipe has no
dependencies:

Unit Tests

The unit test for the phone service is a bit more involved. You need to switch from the mocked-out AngularJS
$httpBackend to a mocked-out Angular Http backend.

For the component specs, you can mock out the Phone service itself, and have it provide canned phone
data. You use Angular's component unit testing APIs for both components.

Finally, revisit both of the component tests when you switch to the Angular router. For the details component,
provide a mock of Angular ActivatedRoute object instead of using the AngularJS $routeParams .

And for the phone list component, a few adjustments to the router make the RouteLink directives work.

User actions such as clicking a link, pushing a button, and entering text raise DOM events. This page explains
how to bind those events to component event handlers using the Angular event binding syntax.

Run the .

You can use Angular event bindings to respond to any DOM event. Many DOM events are triggered by user
input. Binding to these events provides a way to get input from the user.

To bind to a DOM event, surround the DOM event name in parentheses and assign a quoted template
statement to it.

The following example shows an event binding that implements a click handler:

{@a click}

The (click) to the left of the equals sign identifies the button's click event as the target of the binding.
The text in quotes to the right of the equals sign is the template statement, which responds to the click event
by calling the component's onClickMe method.

When writing a binding, be aware of a template statement's execution context. The identifiers in a template
statement belong to a specific context object, usually the Angular component controlling the template. The
example above shows a single line of HTML, but that HTML belongs to a larger component:

When the user clicks the button, Angular calls the onClickMe method from ClickMeComponent .

DOM events carry a payload of information that may be useful to the component. This section shows how to
bind to the keyup event of an input box to get the user's input after each keystroke.

The following code listens to the keyup event and passes the entire event payload ($event) to the
component event handler.

When a user presses and releases a key, the keyup event occurs, and Angular provides a corresponding
DOM event object in the $event variable which this code passes as a parameter to the component's

User Input

Binding to user input events

Get user input from the $event object

onKey() method.

The properties of an $event object vary depending on the type of DOM event. For example, a mouse event
includes different information than a input box editing event.

All standard DOM event objects have a target property, a reference to the element that raised the event. In
this case, target refers to the <input> element and event.target.value returns the current
contents of that element.

After each call, the onKey() method appends the contents of the input box value to the list in the
component's values property, followed by a separator character (|). The interpolation displays the
accumulating input box changes from the values property.

Suppose the user enters the letters "abc", and then backspaces to remove them one by one. Here's what the
UI displays:

a | ab | abc | ab | a | |

Alternatively, you could accumulate the individual keys themselves by substituting `event.key` for
`event.target.value` in which case the same user input would produce: a | b | c | backspace | backspace |
backspace |

{@a keyup1}

The example above casts the $event as an any type. That simplifies the code at a cost. There is no type
information that could reveal properties of the event object and prevent silly mistakes.

The following example rewrites the method with types:

The $event is now a specific KeyboardEvent . Not all elements have a value property so it casts
target to an input element. The OnKey method more clearly expresses what it expects from the

template and how it interprets the event.

Type the $event

Passing $event is a dubious practice

Typing the event object reveals a significant objection to passing the entire DOM event into the method: the
component has too much awareness of the template details. It can't extract information without knowing more
than it should about the HTML implementation. That breaks the separation of concerns between the template
(what the user sees) and the component (how the application processes user data).

The next section shows how to use template reference variables to address this problem.

There's another way to get the user data: use Angular template reference variables. These variables provide
direct access to an element from within the template. To declare a template reference variable, precede an
identifier with a hash (or pound) character (#).

The following example uses a template reference variable to implement a keystroke loopback in a simple
template.

The template reference variable named box , declared on the <input> element, refers to the <input>

element itself. The code uses the box variable to get the input element's value and display it with
interpolation between <p> tags.

The template is completely self contained. It doesn't bind to the component, and the component does nothing.

Type something in the input box, and watch the display update with each keystroke.

This won't work at all unless you bind to an event. Angular updates the bindings (and therefore the screen)
only if the app does something in response to asynchronous events, such as keystrokes. This example code
binds the `keyup` event to the number 0, the shortest template statement possible. While the statement does
nothing useful, it satisfies Angular's requirement so that Angular will update the screen.

It's easier to get to the input box with the template reference variable than to go through the $event object.
Here's a rewrite of the previous keyup example that uses a template reference variable to get the user's
input.

A nice aspect of this approach is that the component gets clean data values from the view. It no longer requires
knowledge of the $event and its structure. {@a key-event}

Get user input from a template reference variable

The (keyup) event handler hears every keystroke. Sometimes only the Enter key matters, because it
signals that the user has finished typing. One way to reduce the noise would be to examine every
$event.keyCode and take action only when the key is Enter.

There's an easier way: bind to Angular's keyup.enter pseudo-event. Then Angular calls the event handler
only when the user presses Enter.

Here's how it works.

In the previous example, the current state of the input box is lost if the user mouses away and clicks elsewhere
on the page without first pressing Enter. The component's value property is updated only when the user
presses Enter.

To fix this issue, listen to both the Enter key and the blur event.

The previous page showed how to display data. This page demonstrated event binding techniques.

Now, put it all together in a micro-app that can display a list of heroes and add new heroes to the list. The user
can add a hero by typing the hero's name in the input box and clicking Add.

Key event filtering (with key.enter)

On blur

Put it all together

Below is the "Little Tour of Heroes" component.

Use template variables to refer to elements — The newHero template variable refers to the
<input> element. You can reference newHero from any sibling or child of the <input> element.

Pass values, not elements — Instead of passing the newHero into the component's addHero

method, get the input box value and pass that to addHero .

Keep template statements simple — The (blur) event is bound to two JavaScript statements. The
first statement calls addHero . The second statement, newHero.value='' , clears the input box
after a new hero is added to the list.

Following is all the code discussed in this page.

You have mastered the basic primitives for responding to user input and gestures.

These techniques are useful for small-scale demonstrations, but they quickly become verbose and clumsy
when handling large amounts of user input. Two-way data binding is a more elegant and compact way to move
values between data entry fields and model properties. The next page, Forms , explains how to write two-
way bindings with NgModel .

Observations

Source code

Summary

{@a top}

Some developers prefer Visual Studio as their Integrated Development Environment (IDE).

This cookbook describes the steps required to set up and use the Angular QuickStart files in Visual Studio
2015 within an ASP.NET 4.x project.

There is no *live example* for this cookbook because it describes Visual Studio, not the QuickStart application
itself.

{@a asp-net-4}

To set up the QuickStart files with an ASP.NET 4.x project in Visual Studio 2015, follow these steps:

If you prefer a `File | New Project` experience and are using **ASP.NET Core**, then consider the
experimental ASP.NET Core + Angular template for Visual Studio 2015. Note that the resulting code does
not map to the docs. Adjust accordingly.

Install Node.js® and npm if they are not already on your machine.

Verify that you are running node version `4.6.x` or greater, and npm `3.x.x` or greater by running `node -v`
and `npm -v` in a terminal window. Older versions produce errors.

The minimum requirement for developing Angular applications with Visual Studio is Update 3. Earlier versions
do not follow the best practices for developing applications with TypeScript. To view your version of Visual
Studio 2015, go to Help | About Visual Studio .

If you don't have it, install Visual Studio 2015 Update 3. Or use Tools | Extensions and Updates to
update to Update 3 directly from Visual Studio 2015.

Visual Studio 2015 QuickStart

ASP.NET 4.x Project

Prerequisite: Node.js

Prerequisite: Visual Studio 2015 Update 3

Configure Visual Studio to use the global external web tools instead of the tools that ship with Visual Studio:

Open the Options dialog with Tools | Options .
In the tree on the left, select Projects and Solutions | External Web Tools .
On the right, move the $(PATH) entry above the $(DevEnvDir) entries. This tells Visual Studio to
use the external tools (such as npm) found in the global path before using its own version of the external
tools.
Click OK to close the dialog.
Restart Visual Studio for this change to take effect.

Visual Studio now looks first for external tools in the current workspace and if it doesn't find them, it looks in the
global path. If Visual Studio doesn't find them in either location, it will use its own versions of the tools.

While Visual Studio Update 3 ships with TypeScript support out of the box, it currently doesn’t ship with
TypeScript 2.2, which you need to develop Angular applications.

To install TypeScript 2.2:

Download and install TypeScript 2.2 for Visual Studio 2015

OR install it with npm: npm install -g typescript@2.2 .

You can find out more about TypeScript 2.2 support in Visual studio here.

At this point, Visual Studio is ready. It’s a good idea to close Visual Studio and restart it to make sure
everything is clean.

Download the QuickStart source from GitHub. If you downloaded as a zip file, extract the files.

Create the ASP.NET 4.x project in the usual way as follows:

In Visual Studio, select File | New | Project from the menu.

Prerequisite: Configure External Web tools

Prerequisite: Install TypeScript 2.2 for Visual Studio 2015

Step 1: Download the QuickStart files

Step 2: Create the Visual Studio ASP.NET project

In the template tree, select Templates | Visual C# (or Visual Basic) | Web .
Select the ASP.NET Web Application template, give the project a name, and click OK.
Select the desired ASP.NET 4.5.2 template and click OK.

This cookbook uses the `Empty` template with no added folders, no authentication, and no hosting. Pick the
template and options appropriate for your project.

Copy the QuickStart files you downloaded from GitHub into the folder containing the .csproj file. Include
the files in the Visual Studio project as follows:

Click the Show All Files button in Solution Explorer to reveal all of the hidden files in the project.
Right-click on each folder/file to be included in the project and select Include in Project .
Minimally, include the following folder/files:

src/app folder (answer No if asked to search for TypeScript Typings)
src/styles.css
src/index.html
package.json
src/tsconfig.json

Restore the packages required for an Angular application as follows:

Right-click on the package.json file in Solution Explorer and select Restore Packages .
This uses npm to install all of the packages defined in the package.json file. It may take some
time.
If desired, open the Output window (View | Output) to watch the npm commands execute.
Ignore the warnings.
When the restore is finished, a message in the bottom message bar of Visual Studio should say:
Installing packages complete . Be patient. This could take a while.

Click the Refresh icon in Solution Explorer.
Do not include the node_modules folder in the project. Let it be a hidden project folder.

Step 3: Copy the QuickStart files into the ASP.NET project
folder

Step 4: Restore the required packages

Step 5: Build and run the app

First, ensure that src/index.html is set as the start page. Right-click index.html in Solution Explorer
and select option Set As Start Page .

Most Visual Studio developers like to press the F5 key and see the IIS server come up. To use the IIS server
with the QuickStart app, you must make the following three changes.

1. In index.html , change base href from <base href="/"> to <base href="/src/"> .
2. Also in index.html , change the scripts to use /node_modules with a slash instead of

node_modules without the slash.
3. In src/systemjs.config.js , near the top of the file, change the npm path to

/node_modules/ with a slash.

After these changes, `npm start` no longer works. You must choose to configure _either_ for F5 with IIS _or_
for `npm start` with the lite-server.

If your app uses routing, you need to teach the server to always return index.html when the user asks for
an HTML page for reasons explained in the Deployment guide.

Everything seems fine while you move about within the app. But you'll see the problem right away if you refresh
the browser or paste a link to an app page (called a "deep link") into the browser address bar.

You'll most likely get a 404 - Page Not Found response from the server for any address other than / or
/index.html .

You have to configure the server to return index.html for requests to these "unknown" pages. The
lite-server development server does out-of-the-box. If you've switched over to F5 and IIS, you have to

configure IIS to do it. This section walks through the steps to adapt the QuickStart application.

Visual Studio ships with IIS Express, which has the rewrite module baked in. However, if you're using regular
IIS you'll have to install the rewrite module.

Tell Visual Studio how to handle requests for route app pages by adding these rewrite rules near the bottom of
the web.config :

<system.webServer> <rewrite> <rules> <rule name="Angular Routes" stopProcessing="true"> <match url=".*"
/> <conditions logicalGrouping="MatchAll"> <add input="{REQUESTFILENAME}" matchType="IsFile"

To run in VS with F5

For apps that use routing

Configure IIS rewrite rules

negate="true" /> <add input="{REQUESTFILENAME}" matchType="IsDirectory" negate="true" /> </conditions>
<action type="Rewrite" url="/src/" /> </rule> </rules> </rewrite> </system.webServer>

The match url, ``, will rewrite every request. You'll have to adjust this if you want some requests to get through,
such as web API requests. The URL in `` should match the base href in `index.html`.

Build and launch the app with debugger by clicking the Run button or by pressing F5 .

It's faster to run without the debugger by pressing `Ctrl-F5`.

The default browser opens and displays the QuickStart sample application.

Try editing any of the project files. Save and refresh the browser to see the changes.

Webpack is a popular module bundler, a tool for bundling application source code in convenient chunks and
for loading that code from a server into a browser.

It's an excellent alternative to the SystemJS approach used elsewhere in the documentation. This guide offers
a taste of Webpack and explains how to use it with Angular applications.

{@a top}

You can also download the final result.

{@a what-is-webpack}

Webpack is a powerful module bundler. A bundle is a JavaScript file that incorporates assets that belong
together and should be served to the client in a response to a single file request. A bundle can include
JavaScript, CSS styles, HTML, and almost any other kind of file.

Webpack roams over your application source code, looking for import statements, building a dependency
graph, and emitting one or more bundles. With plugins and rules, Webpack can preprocess and minify different
non-JavaScript files such as TypeScript, SASS, and LESS files.

You determine what Webpack does and how it does it with a JavaScript configuration file,
webpack.config.js .

{@a entries-outputs}

You supply Webpack with one or more entry files and let it find and incorporate the dependencies that radiate
from those entries. The one entry point file in this example is the application's root file, src/main.ts :

Webpack inspects that file and traverses its import dependencies recursively.

It sees that you're importing @angular/core so it adds that to its dependency list for potential inclusion in
the bundle. It opens the @angular/core file and follows its network of import statements until it has
built the complete dependency graph from main.ts down.

Webpack: An Introduction

What is Webpack?

Entries and outputs

Then it outputs these files to the app.js bundle file designated in configuration:

output: { filename: 'app.js' }

This app.js output bundle is a single JavaScript file that contains the application source and its
dependencies. You'll load it later with a <script> tag in the index.html .

{@a multiple-bundles}

You probably don't want one giant bundle of everything. It's preferable to separate the volatile application app
code from comparatively stable vendor code modules.

Change the configuration so that it has two entry points, main.ts and vendor.ts :

entry: { app: 'src/app.ts', vendor: 'src/vendor.ts' },

output: { filename: '[name].js' }

Webpack constructs two separate dependency graphs and emits two bundle files, one called app.js

containing only the application code and another called vendor.js with all the vendor dependencies.

The `[name]` in the output name is a *placeholder* that a Webpack plugin replaces with the entry names, `app`
and `vendor`. Plugins are [covered later](guide/webpack#commons-chunk-plugin) in the guide.

To tell Webpack what belongs in the vendor bundle, add a vendor.ts file that only imports the application's
third-party modules:

{@a loaders}

Webpack can bundle any kind of file: JavaScript, TypeScript, CSS, SASS, LESS, images, HTML, fonts,
whatever. Webpack itself only understands JavaScript files. Teach it to transform non-JavaScript file into their
JavaScript equivalents with loaders. Configure loaders for TypeScript and CSS as follows.

rules: [{ test: /.ts$/, loader: 'awesome-typescript-loader' }, { test: /.css$/, loaders: 'style-loader!css-loader' }]

When Webpack encounters import statements like the following, it applies the test RegEx patterns.

import { AppComponent } from './app.component.ts';

import 'uiframework/dist/uiframework.css';

Multiple bundles

Loaders

When a pattern matches the filename, Webpack processes the file with the associated loader.

The first import file matches the .ts pattern so Webpack processes it with the
awesome-typescript-loader . The imported file doesn't match the second pattern so its loader is

ignored.

The second import matches the second .css pattern for which you have two loaders chained by the (!)
character. Webpack applies chained loaders right to left. So it applies the css loader first to flatten CSS
@import and url(...) statements. Then it applies the style loader to append the css inside
<style> elements on the page.

{@a plugins}

Webpack has a build pipeline with well-defined phases. Tap into that pipeline with plugins such as the
uglify minification plugin:

plugins: [new webpack.optimize.UglifyJsPlugin()]

{@a configure-webpack}

After that brief orientation, you are ready to build your own Webpack configuration for Angular apps.

Begin by setting up the development environment.

Create a new project folder.

mkdir angular-webpack cd angular-webpack

Add these files:

Many of these files should be familiar from other Angular documentation guides, especially the [Typescript
configuration](guide/typescript-configuration) and [npm packages](guide/npm-packages) guides. Webpack, the
plugins, and the loaders are also installed as packages. They are listed in the updated `packages.json`.

Open a terminal window and install the npm packages.

npm install

{@a polyfills}

Plugins

Configuring Webpack

You'll need polyfills to run an Angular application in most browsers as explained in the Browser Support guide.

Polyfills should be bundled separately from the application and vendor bundles. Add a polyfills.ts like
this one to the src/ folder.

Loading polyfills
Load `zone.js` early within `polyfills.ts`, immediately after the other ES6 and metadata shims.

Because this bundle file will load first, polyfills.ts is also a good place to configure the browser
environment for production or development.

{@a common-configuration}

Developers typically have separate configurations for development, production, and test environments. All
three have a lot of configuration in common.

Gather the common configuration in a file called webpack.common.js .

{@a inside-webpack-commonjs}

Webpack is a NodeJS-based tool that reads configuration from a JavaScript commonjs module file.

The configuration imports dependencies with require statements and exports several objects as properties
of a module.exports object.

entry —the entry-point files that define the bundles.
resolve —how to resolve file names when they lack extensions.
module.rules — module is an object with rules for deciding how files are loaded.
plugins —creates instances of the plugins.

{@a common-entries}

The first export is the entry object:

This entry object defines the three bundles:

Polyfills

Common configuration

Inside webpack.common.js

entry

polyfills —the polyfills needed to run Angular applications in most modern browsers.
vendor —the third-party dependencies such as Angular, lodash, and bootstrap.css.
app —the application code.

{@a common-resolves}

The app will import dozens if not hundreds of JavaScript and TypeScript files. You could write import

statements with explicit extensions like this example:

import { AppComponent } from './app.component.ts';

But most import statements don't mention the extension at all. Tell Webpack to resolve extension-less file
requests by looking for matching files with .ts extension or .js extension (for regular JavaScript files
and pre-compiled TypeScript files).

If Webpack should resolve extension-less files for styles and HTML, add `.css` and `.html` to the list.

{@a common-rules}

Rules tell Webpack which loaders to use for each file, or module:

awesome-typescript-loader —a loader to transpile the Typescript code to ES5, guided by the
tsconfig.json file.
angular2-template-loader —loads angular components' template and styles.
html-loader —for component templates.

images/fonts—Images and fonts are bundled as well.
CSS—the first pattern matches application-wide styles; the second handles component-scoped styles (the
ones specified in a component's styleUrls metadata property).

The first pattern is for the application-wide styles. It excludes `.css` files within the `src/app` directory where the
component-scoped styles sit. The `ExtractTextPlugin` (described below) applies the `style` and `css` loaders to
these files. The second pattern filters for component-scoped styles and loads them as strings via the `raw-
loader`, which is what Angular expects to do with styles specified in a `styleUrls` metadata property.
Multiple loaders can be chained using the array notation.

{@a common-plugins}

resolve extension-less imports

module.rules

Finally, create instances of three plugins:

{@a commons-chunk-plugin}

The app.js bundle should contain only application code. All vendor code belongs in the vendor.js

bundle.

Of course the application code imports vendor code. On its own, Webpack is not smart enough to keep the
vendor code out of the app.js bundle. The CommonsChunkPlugin does that job.

The `CommonsChunkPlugin` identifies the hierarchy among three _chunks_: `app` -> `vendor` -> `polyfills`.
Where Webpack finds that `app` has shared dependencies with `vendor`, it removes them from `app`. It would
remove `polyfills` from `vendor` if they shared dependencies, which they don't.

{@a html-webpack-plugin}

Webpack generates a number of js and CSS files. You could insert them into the index.html manually.
That would be tedious and error-prone. Webpack can inject those scripts and links for you with the
HtmlWebpackPlugin .

{@a environment-configuration}

The webpack.common.js configuration file does most of the heavy lifting. Create separate, environment-
specific configuration files that build on webpack.common by merging into it the peculiarities particular to
the target environments.

These files tend to be short and simple.

{@a development-configuration}

Here is the webpack.dev.js development configuration file.

plugins

CommonsChunkPlugin

HtmlWebpackPlugin

Environment-specific configuration

Development configuration

The development build relies on the Webpack development server, configured near the bottom of the file.

Although you tell Webpack to put output bundles in the dist folder, the dev server keeps all bundles in
memory; it doesn't write them to disk. You won't find any files in the dist folder, at least not any generated
from this development build.

The HtmlWebpackPlugin , added in webpack.common.js , uses the publicPath and the
filename settings to generate appropriate <script> and <link> tags into the index.html .

The CSS styles are buried inside the Javascript bundles by default. The ExtractTextPlugin extracts
them into external .css files that the HtmlWebpackPlugin inscribes as <link> tags into the
index.html .

Refer to the Webpack documentation for details on these and other configuration options in this file.

Grab the app code at the end of this guide and try:

npm start

{@a production-configuration}

Configuration of a production build resembles development configuration with a few key changes.

You'll deploy the application and its dependencies to a real production server. You won't deploy the artifacts
needed only in development.

Put the production output bundle files in the dist folder.

Webpack generates file names with cache-busting hash. Thanks to the HtmlWebpackPlugin , you don't
have to update the index.html file when the hash changes.

There are additional plugins:

* NoEmitOnErrorsPlugin —stops the build if there is an error.
* UglifyJsPlugin —minifies the bundles.
* ExtractTextPlugin —extracts embedded css as external files, adding cache-busting hash to the
filename.
* DefinePlugin —use to define environment variables that you can reference within the application.
* LoaderOptionsPlugins —to override options of certain loaders.

Thanks to the DefinePlugin and the ENV variable defined at top, you can enable Angular production

Production configuration

mode like this:

Grab the app code at the end of this guide and try:

npm run build

{@a test-configuration}

You don't need much configuration to run unit tests. You don't need the loaders and plugins that you declared
for your development and production builds. You probably don't need to load and process the application-wide
styles files for unit tests and doing so would slow you down; you'll use the null loader for those CSS files.

You could merge the test configuration into the webpack.common configuration and override the parts you
don't want or need. But it might be simpler to start over with a completely fresh configuration.

Reconfigure Karma to use Webpack to run the tests:

You don't precompile the TypeScript; Webpack transpiles the Typescript files on the fly, in memory, and feeds
the emitted JS directly to Karma. There are no temporary files on disk.

The karma-test-shim tells Karma what files to pre-load and primes the Angular test framework with test
versions of the providers that every app expects to be pre-loaded.

Notice that you do not load the application code explicitly. You tell Webpack to find and load the test files (the
files ending in .spec.ts). Each spec file imports all—and only—the application source code that it tests.
Webpack loads just those specific application files and ignores the other files that you aren't testing.

Grab the app code at the end of this guide and try:

npm test

{@a try}

Here is the source code for a small application that bundles with the Webpack techniques covered in this
guide.

The app.component.html displays this downloadable Angular logo . Create a folder called

Test configuration

Trying it out

images under the project's assets folder, then right-click (Cmd+click on Mac) on the image and
download it to that folder.

{@a bundle-ts}

Here again are the TypeScript entry-point files that define the polyfills and vendor bundles.

{@a highlights}

There are no <script> or <link> tags in the index.html . The HtmlWebpackPlugin

inserts them dynamically at runtime.

The AppComponent in app.component.ts imports the application-wide css with a simple
import statement.

The AppComponent itself has its own html template and css file. WebPack loads them with calls to
require() . Webpack stashes those component-scoped files in the app.js bundle too. You don't

see those calls in the source code; they're added behind the scenes by the
angular2-template-loader plug-in.

The vendor.ts consists of vendor dependency import statements that drive the vendor.js

bundle. The application imports these modules too; they'd be duplicated in the app.js bundle if the
CommonsChunkPlugin hadn't detected the overlap and removed them from app.js . {@a

conclusion}

You've learned just enough Webpack to configurate development, test and production builds for a small
Angular application.

You could always do more. Search the web for expert advice and expand your Webpack knowledge.

Back to top

Highlights

Conclusion

